

 ExcelRT

 Mac, Windows & Cloud

 User’s Guide

 Version 3.1

 Excel Software
 www.excelsoftware.com • info@excelsoftware.com

 Phone: 702-445-7645

mailto:info@excelsoftware.com

Copyright and Trademarks
MacA&D™, MacTranslator™, WinA&D™, WinTranslator™, XojoApp™,
MarketBuddy™, ClickInstall™, QuickLicense™, QuickLicense Server™,
DocProtect™, WebActivation™, LicenseSupport™, AppProtect™, QLRT
Xcode™, OfficeProtect™, PluginFMQLRT™ , PluginXojoQLRT™,
PluginProtect Photoshop™, Cloud License™, Cloud License Server™ , Web
License Server™, Desktop License Server™, QuickLicenseRT Linux™,
MakeDongle™, Safe Activation™, ExcelRT™, ExcelCL™ and CloudRT™ are
trademarks of Excel Software. Copyright 1985-2021 by Excel Software with all
rights reserved. Other trademarks are property of their respective owners and used
for illustrative purposes only.

This manual and software are copyrighted with all rights reserved. Under the
copyright laws, this manual or the software may not be copied, in whole or part,
without written consent of Excel Software, except in the normal use of the software
by licensed users or to make a backup copy. The same proprietary and copyright
notices must be affixed to any permitted copies as were affixed to the original.

Disclaimer
EXCEL SOFTWARE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS SOFTWARE,
ITS QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS",
AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL EXCEL SOFTWARE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. In particular, Excel Software shall have no liability for any programs
or data stored in or used with Excel Software products, including the costs of
recovering such programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESSED OR
IMPLIED. No Excel Software dealer, agent or employee is authorized to make any
modification, extension or addition to this warranty.

Chapter 1 Calculation Precedence 10

Contents

Setup ExcelRT 1-1 Range Selection 10
 Data Entry 10 Introduction 2
 Data Validation 11 ExcelRT Overview 4
 Pictures & Form Controls 11 Design vs User Mode 5
 Background Images 11 Limits and Differences 6
 Structured Table References 11 Supported Platforms 7
 Text Across Cells 12 Install on Windows 7
 Stylized Text 12 Install ExcelRT 7
 Unicode Text 12 Install ConvertExcelRT 7
 Recalculation Algorithm 13 Run ExcelRT or ConvertExcelRT 8
 Design for Performance 14 Windows DLL Update 8
 Sheet Type 15 Uninstall 8
 Fonts 16 Install on Mac 9
 Design Mode Interface 18 Install ExcelRT 9
 User Mode Interface 19 Uninstall ExcelRT 9
 Conversion Checklist 21 Activation 9
 Move a License 11
Chapter 3 Restore a License 11
Program ExcelRT 3-1 Quick Start 12
 Button Actions 1 About This Book 13
 Script Commands 2 Support Services 13
 Vendor Commands 3
 Server Setup 3 Chapter 2

Develop ExcelRT 2-1 RegisterServer 3
 Log 4 ConvertExcelRT 2
 Upload 4 Overview Dialog 4
 Email 4 ExcelRT Design Mode 5
 Email Server 6 Cell Edit 5
 Storage 8 Design for 100% Zoom 5
 Message 9 Pictures 6
 Query 11 Tables 6
 Cloud Sharing 13 Encrypted File 7
 Settings Dialog 15 Exceptions 7
 Event Actions 16 Performance 8

External Commands 18 Feature Differences 9
 Clipboard Command 18 Cell Format 9
 File Command 18 Functions 9
 Create a Script 19 Range References 9
 Variables 20 Range Reference Function 9
 Text Editor 21 3D References 10
 Script Line Continuation 21 Formula Parameter Nesting 10

Contents

Contents-1

 Test a Script 22 Plugin Files 54
 Download Plugin File 22 Google Map and Direction 57
 Custom Commands 22 Pictures 58
 Using a Command as a Parameter 25 Form Controls 60
 Importing a Script 26 HTML Control 61
 Custom Functions 27 Command Log 65
 Arrays 66
Chapter 4 Cloud License 68
Script Commands 4-1 Progress 69

 Switch Rows and Columns 70 Cell Data Import and Export 1
 Sound 71 Platform Specific 3
 Python 72 Shared Ticket Folder 4
 JSON 72 Custom Images 6
 Database 75 Internet Data 7
 Dialog with Button Actions 9
Chapter 5 External Applications 10
Deploy ExcelRT 5-1 Clipboard and File Data 10
 Generate ERT File 2 Prompt for Data Entry 10
 Standalone App 3 Variables 12
 ExcelRT on Customer Computer 5 Prompt User 14
 Activate Standalone App 7 Cell References 15
 Update Standalone App 8 Math 16
 Deploy Plugin Files 9 Lists 16
 Screen Size and Orientation 10 Email Read 18
 Purchase Button 11 External App Communication 18
 Picture and PDF Files 20
Chapter 6 Subroutines 21
Charts 6-1 Conditionals and Loops 22

 Symbols 24 Chart Types 4
 CSV Read, Write and Modify 26 Chart Styles 7
 Multiple CSVs 29 Chart Components 8
 Fuzy Query 30 Chart Dimensions 9
 String 32 Chart Data 10
 Dialog 34 Build and Use Charts 10
 ReportBuilder 36
 Cell Data 38

Chapter 7

 Cell Controls 39 ExcelRT Builder 7-1 Sheet Resize 42
 Builder Tools 3 Feature Control 43
 Sheet Add Delete 7 Credit Card and Paypal 43
 Sheet Size 7
 Erase Cell Data 8
 Cell Size & Visibility 8
 Format Rules 8
 Control Add Delete 9

 Stripe Payment 46
 Message Dialog 48
 Miscellaneous 49
 Platform Specific Files 52
 Splitting & Scaling Images 53

Contents

Contents-2

Contents

Contents-3

 Control Edit 10
 Pictures 11
 Cell Control 12
 Table Add Delete 13
 Cell Borders 14
 Cell Validation 14
 Cell Text Color 15
 Cell Background 15
 Cell Copy & Paste 16
 Paste Cell Range 16
 Sheet Filter 17
 Merged Cells 17
 HTML Control 18
 ExcelRT Plugins 22

Chapter 8
ExcelRT Cloud 8-1
 Define Apps 2
 Define Users 3
 User Experience 3
 Custom File Manager 5
 Settings 6
 Feedback 7
 Cloud Sharing 8
 User Notify and Alert 9
 Batch User 10
 Plugin Folder 12
 Update an App 14
 Custom Login 15
 Browser & Device User Experience 16
 ExcelRT Control Panel 17
 ExcelRT Cloud Pricing 19
 Multiple Vendor Accounts 22
 Relocate Vendor Account 22
 Safe Activation 23
 Create User Account 23
 Suspend User Account 26
 App Family 27
 ExcelRT Plugin 28
 User Profile 30
 Script Commands 31
 Backups 32

Chapter 9
Tutorial 9-1
 TravelCalc 1
 Convert Workbook 11
 Controls and Scripts 19

Chapter

1

Setup ExcelRT

This chapter introduces ExcelRT and the ConvertExcelRT tool. It describes the
process used to convert an Excel workbook into a platform-neutral file. That file
runs within the free ExcelRT runtime application on Mac or Windows. An ExcelRT
file can run in a browser on any computer or mobile device with ExcelRT Cloud.

This chapter describes the process of installing and uninstalling the software on
macOS and Windows computers. It shows how a developer can activate ExcelRT
Builder with a Serial Number. ExcelRT Builder is used to author, optimize and
encrypt a workbook for distribution to customers.

For an end user, ExcelRT is conceptually similar to a run-time version of Microsoft
Excel without authoring features. ExcelRT does not support every feature of Excel
or other spreadsheet applications, but most commonly used features are available.
Some Excel workbooks can be converted to ExcelRT with modest effort.

An ExcelRT file can be authored in Microsoft Excel, then converted to ExcelRT
with a conversion tool or authored directly in ExcelRT Builder.

Chapter 1: Setup ExcelRT

1-1

Introduction
Microsoft Excel is a powerful spreadsheet-authoring tool. With years of continuous
development and millions of users worldwide, it is the undisputed leader in
spreadsheet software. Excel allows users with limited computer skills and no
programming experience to create applications useful to others with a similar
business, hobby or interest.

Excel Software makes tools to protect, license and productize Excel workbooks that
can be distributed and sold to customers that have Excel installed on their computer.
Starting from a finished Excel workbook, there are several parts in the process to
complete the user experience as illustrated below.

As you can see, most of the productization process is the same for an Excel or
ExcelRT based application. If you have already developed an Excel application it
can quickly be transformed to a finished, sellable application. If you later switch to
an ExcelRT based application, almost all of the tools and process are the same.

The strength of Excel as an authoring tool often presents a weakness as a distribution
platform for the finished workbook. Issues faced by a developer selling an Excel
workbook are discussed below. ExcelRT addresses many of these issues to offer a
better distribution platform for smaller workbooks.

Menus and Ribbon

For most applications, the Excel menu command and ribbon features are a
distraction to the user working with the finished application. It often gives the
inexperienced user the ability to break the application so it no longer functions as
expected.

Developers use VBA code to hide the menus and ribbon. Excel features can hide
formulas and determine editable cells or to validate data entry. The ExcelRT
runtime is designed to produce an end-user application without distracting authoring
commands or ribbons.

Platform Support

The full Microsoft Excel application is available for Mac and Windows computers.
Linux or mobile users are unable to use your product. ExcelRT runs on Mac,
Windows or in a browser on any computer or device.

Chapter 1: Setup ExcelRT

1-2

Excel Version and Platform Inconsistencies

Excel has been under development for over 30 years. Your customers may use
many versions of Excel with different supported features. Users may have Excel
2007 through 2020 on Windows or Excel 2011 or 2016+ on Mac. A lightweight
version of Excel is available in a browser but cannot be used for a protected,
licensed App.

An Excel developer must decide whether to limit product features to those supported
by the oldest version of Excel or require users to buy a specific version and limit
their potential sales. The developer and user must contend with Excel platform and
OS differences.

ExcelRT features are standardized across platforms. The ExcelRT runtime can be
distributed with your application so you control the user experience.

User Costs

With an Excel workbook product, potential customers must buy Microsoft Excel.
Some users may already have it, but it may not be on every computer where they
want to use your product.

If your product sells for $5000, the cost of Excel is insignificant. If your product
sells for $50, the cost of Excel will significantly reduce your potential market. The
ExcelRT runtime engine is free to use and distribute.

Vendor Costs

When selling an Excel Workbook product, a vendor has tech support cost to deal
with Excel specific issues like Trust Center settings, different Excel versions and
hundreds of user modified preferences. The Excel ribbon has features that can
confuse the user or disable the workbook.

ExcelRT provides the same user experience across platforms with controlled user
customization. An ExcelRT based application should lower vendor support cost.

Protection

Microsoft Excel was designed to produce documents that are inherently unprotected
and easily shared between users. Using Excel alone you cannot protect and license
your product. Excel Software makes tools to protect and license your workbook, but
some developer effort is required to prepare your workbook before wrapping it into
a protected EXE (Windows) or APP (Mac OS X).

Chapter 1: Setup ExcelRT

1-3

Although it can be used independently, ExcelRT was designed for protection and
licensing using QuickLicense or AppProtect. The ExcelRT runtime environment has
no commands to show cell properties, formulas or decompile an encrypted ExcelRT
file. An ExcelRT app is secure by design.

User Knowledge

Some potential customers may have never used Excel. If you have been using Excel
for years, you have probably forgotten all the questions that a first time user faces.

The Excel menus, ribbons and popup menus will likely add unwanted complexity
and useless authoring features to your application. You’ll need to educate your users
on how to use your application without getting overwhelmed by complexity.

ExcelRT presents a streamlined interface for your App that lowers the learn curve
for a typical consumer.

Vendor Branding

Most vendors want to present their product as a professional application with its own
icon and custom interface. You may want your application to be completely self-
contained so it can be installed and used without requiring an additional setup
process on the computer or device.

The ExcelRT runtime can be installed with your application. Your App can have its
own icon, licensing process and no dependencies to external software.

ExcelRT Overview
ExcelRT implements a core subset of the runtime features in Microsoft Excel with
royalty-free distribution. The same ExcelRT file can produce a Mac or Windows
desktop application or run in a browser from any computer or mobile device with
ExcelRT Cloud.

ExcelRT presents a tabbed workbook window showing the cell structure of each
spreadsheet. Your App presents a simplified menu consisting of just Open, Save,
Print and Quit commands on the File menu, that’s it. A user can open, edit data,
use your product features and save their work. Data is stored in a platform neutral,
encrypted file.

The ExcelRT runtime engine is not an authoring tool. A developer can author a
workbook using ExcelRT Builder or use Excel on Mac or Windows and then
convert it to ExcelRT. ConvertExcelRT runs on Windows with 32-bit Excel
installed.

Chapter 1: Setup ExcelRT

1-4

A developer can enable the ExcelRT Builder ribbon to author or refine a workbook
into a polished product. With ExcelRT Builder, Microsoft Excel is not required.

As an authoring tool, Excel attempts to guess a user’s intent when they type data into
a cell or it is displayed back to the user. This often allows an author to achieve
reasonable results without defining specific cell formats, data validation rules or
even ensuring their formulas do not generate errors.

Since ExcelRT runtime engine is not an authoring tool, don’t expect it to guess
anything about the user’s intent. If you want a cell to be displayed as a date, a time
or a currency value, give it a specific format. If you want the user to be able to enter
a value like 1/2/2016 or Jan 2, 2016, then assign a data validation rule to the cell
declaring it to be a date value.

To summarize, if you want data in a cell to be entered, stored, used or displayed as
anything other than text within ExcelRT, give it a specific display format and data
validation rules.

Design vs User Mode
ExcelRT support two file types, .xml and .ert. An XML file stores data in a
formatted text file used by a developer. An XML file is generated from an Excel
workbook using the ConvertExcelRT tool or from ExcelRT Builder. An ERT file
stores data in a compressed, encrypted file intended for distribution to a user.

If you are a programmer, think of the XML file as the source file for your project
and the ERT file as a compiled binary file where the user cannot see or modify
formulas.

ExcelRT can only edit one file at a time. If a user double-clicks the ExcelRT
runtime application, it presents the file selection dialog to choose an XML or ERT
file.

ExcelRT is typically used together with either QuickLicense or AppProtect to wrap
an ERT file into a licensed application. The AddLicense wrapping tool included
with QuickLicense adds the optional Open Data File user interface window. The
user selects a file from the Open Data File interface window to open it into ExcelRT.

Based on the type of opened file (.xml or .ert), ExcelRT is in Design or User mode,
respectively. In User mode, the File menu has Open and Save commands.

In Design mode, the File menu has additional commands to view or change cell data,
conditional rules, range names, etc. For example, the developer could change the
cell value, formula, display format or color for a selected cell. If ExcelRT has been
activated with a Serial Number, the full ExcelRT Builder environment is available.

Chapter 1: Setup ExcelRT

1-5

Limits and Differences
If your workbook is large, has dozens of sheets or uses the most complex features
available in the latest version of Excel, ExcelRT is probably not a good solution for
your project. While Excel offers thousands of powerful features, most workbooks
use a tiny fraction of its capabilities.

Here are some limitations of ExcelRT that may disqualify it for a specific project.
Over time, some limitations may be removed as new enhancements are added.
ExcelRT also implements Standard, Calculated and Static sheet types to optimize
memory, file size and reduce open and save time.

Current ExcelRT limitations:

• Maximum 15 Sheets per Workbook
• Maximum 999 Columns per Sheet
• Maximum 999 Rows per Sheet
• Maximum 500 Tokens per Formula - “=A1+D2” has 3 tokens A1, + and D2
• No VBA or Macros (use Button and Event driven scripts or Python)
• No UserForms (use DataForm script command or scriptable dialogs)
• No ActiveX Controls, AddIns, 3D Maps or Spark lines
• No External Data or Connections (connect with Apps, Internet or ODBC)
• No Zoom, Freeze panels or Splits
• Desktop Apps can support workbooks up to about 200,000 total cells
• Cloud Apps can support workbooks up to about 100,000 total cells

Formulas are a core feature of any spreadsheet. Formulas generally work the same
in ExcelRT. Excel implements hundreds of functions that can be used from
formulas. Some functions are only supported in newer versions of Excel.

ExcelRT implements the most commonly used functions from Excel using the same
parameters. If a function isn’t supported, you’ll likely see a Message dialog pop up
when a converted workbook is opened in ExcelRT so you’ll instantly know that it is
not currently supported.

Refer to Excel documentation for information about each function and its
parameters. If an error occurs in the function parameter list or the computation of a
function, ExcelRT returns ???.

Chapter 1: Setup ExcelRT

1-6

Supported Platforms
ExcelRT runs on Windows 7 through 10 or on Mac OS 10.10 or later. ExcelRT on
macOS is a Universal app that runs native on Intel 64-bit or ARM 64-bit computers.

ExcelRT Cloud works on almost any modern browser from any computer or device.

Install on Windows
ExcelRT and ConvertExcelRT each have their own setup file that installs the
software and related resources just like any other Windows application.

Install ExcelRT
To install ExcelRT on Windows, download and run the Setup file. After installation,
use the shortcut desktop icon or the ExcelRT command on the Start menu.

Install ConvertExcelRT
To install ConvertExcelRT on Windows, download and run the Setup file. After
installation, use the shortcut desktop icon or the ConvertExcelRT command on the
Start menu. To use ConvertExcelRT you will need 32-bit Excel installed. 64-bit
Excel is not directly supported. With newer versions of 64-bit Office, Microsoft
appears to be including the 32-bit DLLs so ConvertExcel can be used.

The ConvertExcelRT application, support files and sample projects are installed to
this folder. This folder contains the User Guide PDF.

C:\Program Files (x86)\Excel Software\ConvertExcelRT

ConvertExcelRT Folder Installed on Windows 10

Chapter 1: Setup ExcelRT

1-7

Run ExcelRT or ConvertExcelRT
Shortcut icons are installed on your desktop.
Double-click an icon to run that application.

ExcelRT and ConvertExcelRT applications use
standard Windows operating system resources.
The Windows Update process ensures that your computer has the necessary OS
features required by modern software applications.

If you have an older Windows 7 or 8.1 computer and have disabled the normal
Window Update process, you may need to do an additional installation step.

Windows DLL Update
If you have an older Windows 7 or 8.1 computer and have disabled the normal
Window Update process, you might see an error dialog when attempting to launch
ExcelRT or ConvertExcelRT for the first time.

If you see an error dialog like this, close the dialog and see the online instruction on
the Missing DLLs page linked from the download page.

Uninstall
To uninstall ExcelRT or ConvertExcelRT on Windows, use the standard approach to
remove software from the Windows Control Panel.

Chapter 1: Setup ExcelRT

1-8

Install on Mac
ExcelRT is an application that runs on Mac OS 10.10 or later. The ConvertExcelRT
application is not available on Mac since it requires resources that are only available
on Windows computers with 32-bit Excel installed.

You can author your workbook using Excel running on a Mac, but the conversion
process must occur on a Windows computer. Once you have converted the
workbook, it works with ExcelRT running on Mac or Windows.

Install ExcelRT

To install, double-click the ExcelRT setup file. ExcelRT is
installed in the Applications folder. You may want to drag
the application file to your Dock so it is easy to launch.

Uninstall ExcelRT
To uninstall ExcelRT on Mac, just drag its folder to the trash. You can also drag the
ExcelRT.ini file to the trash. It is stored in the Excel Software folder within the
Preferences folder in the Library folder of your home folder.

Activation
ExcelRT and ConvertExcelRT are free for anyone to download from the
www.excelsoftware.com website and use for personal or commercial applications.

ExcelRT can be activated with a purchased Serial Number to give a developer
additional rights and capabilities. A developer only needs to activate ExcelRT on
one development computer for unlimited distribution rights for all created files.

• Generate Encrypted Files (ERT files)
• ExcelRT Builder
• Distribute the ExcelRT application directly to Customers
• Protect and License an App with QuickLicense or Cloud License
• Free Technical Support by Phone or Email

Workbooks created with an ExcelRT developer subscription can be distributed and
used forever, even if the developer subscription is not renewed.

Chapter 1: Setup ExcelRT

1-9

http://www.excelsoftware.com/

ConvertExcelRT generates an XML file used by developers. When that file is
opened into ExcelRT, it can be saved as an encrypted .ert file using the Save
Encrypted command on the File menu. Enter your Serial Number and click OK.

Enter a Serial Number to Save an Encrypted Document

On first use, an Activation dialog is presented to complete the activation process.
Enter your Serial Number and Company name, then click Activate Now.

Activate with a Serial Number

In the unlikely event that your computer is not connected to the Internet, it can still
be activated. A Select Activation Type dialog is presented describing how to do a
manual activation.

Chapter 1: Setup ExcelRT

1-10

Move a License
ExcelRT is licensed for use on a specific computer during the activation process.

If you purchase a new computer, you can release the license from your old computer
so it can be installed and activated on the new computer. From the old computer,
launch ExcelRT and present the Save Encrypted Document dialog.

With the Shift and OS keys pressed, click the OK button until you see the License
Options dialog. The OS key, also called the Command key has an Apple icon for
Mac or Window icon for Windows.

Release a License to Use It on Another Computer

Select the Release panel and click OK to block the license on the old computer and
free it for use on another computer. Now, install ExcelRT onto the new computer.

The License Options dialog can also be presented with the License command on the
File menu.

Restore a License
If ExcelRT is installed, activated and released, the software still resides on the
computer but features are blocked since it does not have an active license. To
restore an active license, press the Shift+OS keys when clicking on the OK button
in the Save Encrypted Document dialog..

The License Options dialog is presented. Select the Restore panel and click OK to
restore the active license. The license cannot be restored if it is currently being used
on another computer.

Chapter 1: Setup ExcelRT

1-11

Quick Start
Here is an outline of activities to create an ExcelRT workbook. Watch the
introduction videos on the ExcelRT home page on the Excel Software website. An
extensive video library is available on the ExcelRT panel of the Videos page.

An ExcelRT file can be authored with ExcelRT Builder or converted from an Excel
workbook. With either approach, as a developer you will need ExcelRT Builder to
refine, test and build an encrypted ExcelRT workbook for distribution to users.

On Windows, install ExcelRT and optionally ConvertExcelRT. If you plan to
distribute your product on Mac, also install ExcelRT on a macOS computer.

Install QuickLicense (which includes AddLicense) on a Window and/or Mac OS
computer. You can define a license and generate a platform neutral Ticket file from
either platform for use on both platforms. Run AddLicense on Windows to output
an EXE or AddLicense on macOS to output an APP file.

Alternatively, use AppProtect to build a Mac or Windows application.

To convert an Excel workbook to an ExcelRT file, complete all tutorials from the
Tutorials chapter of this User Guide. Alternatively, when authoring a new
workbook with ExcelRT Builder skim through the tutorial information then watch a
video to get started with ExcelRT Builder.

This User Guide is supplied with ConvertExcelRT. It can be opened from the Help
menu when the application is running. You can also choose Sample1, Sample2,
from the Help menu to open those folders of sample files.

You will likely need to run the conversion process many times. Each time, you will
modify your Excel workbook to add or modify cell formats, validation rules and
other refinements needed for it to run nicely within ExcelRT.

You can save yourself hours of frustration during the conversion process by reading
through the ExcelRT User Guide before you start. It describes differences between
Excel and ExcelRT so when a converted workbook doesn’t work as expected, you’ll
know why and how to correct it.

Somewhere during the process, ExcelRT Builder will become the primary
development environment for your workbook. Once you start using ExcelRT
Builder, remember to keep a backup of the XML source file for your project.

Chapter 1: Setup ExcelRT

1-12

Chapter 1: Setup ExcelRT

1-13

Prepare Excel Workbook for Conversion
Excel may think cells are occupied, even though they appear to be empty.

Before attempting to process a workbook, delete unused columns to the right and
unused rows below the used range of cells on each sheet. This may substantially
reduce the used cell range of each sheet to reduce conversion time.

From each sheet, drag though about 30 column headers to the right of the last used
column. All cells in those columns are now selected. Right-click to present the
popup menu and choose the Delete command. Now drag through about 30 row
headers below the last used row and delete those rows.

This action allows Excel to adjust its range of used cells. Save the workbook.

About This Book
This book covers ExcelRT for Mac, Windows or ExcelRT Cloud. It documents the
Windows edition of ConvertExcelRT. Most of the information is the same
regardless of the platform. Where information is platform specific such as the
installation process, details are provided for each platform.

Most screen shots for this book were taken from ExcelRT running on Mac. The
main window and dialogs for the Windows edition are nearly identical.

Support Services
Excel Software provides technical support and encourages user feedback to improve
its products and services. Technical and sales questions can be answered by phone,
email or through information and demonstration videos on our web site.

Ph. 702-445-7645
Email: info@excelsoftware.com
Web: www.excelsoftware.com

mailto:info@excelsoftware.com
http://www.excelsoftware.com/

Chapter

2

Develop ExcelRT

With ExcelRT Builder, a developer can author an ExcelRT file directly without
using Microsoft Excel or the ConvertExcelRT tool. See the ExcelRT Builder
chapter.

Your workbook can also be authored with Excel on Mac or Windows. Regardless of
where you create the workbook, you’ll need to save it as a .xls or .xlsx file. Do the
conversion on Windows with 32-bit Excel installed. The .xlsx file format is
recommended since some Excel features are not retained by.xls files.

When ExcelRT was first introduced, all workbooks were authored in Excel and each
editing change required use of the conversion tool. This chapter assumes that your
project started as an existing Excel workbook. Familiar Excel terminology is used to
explain the capabilities of ExcelRT. Today, the conversion tool is seldom used after
the initial conversion. Editing and optimization is much faster with ExcelRT
Builder.

The conversion process from an Excel file to an ExcelRT file, may take hours or
days to complete. Resist the temptation to throw your Excel file at ConvertExcelRT
and expect a successful conversion. That approach will likely just waste time and
make no progress towards your goal.

Learn about ConvertExcelRT and ExcelRT by running the tutorials in this book and
watching the video. Once you have successfully completed the tutorials you will
understand the overall process.

Chapter 2: Develop ExcelRT

2-1

Next read this chapter so you’ll know how to troubleshoot issues that will occur
during your own conversion. You’ll also learn how to make dramatic improvements
to the performance and usability of the finished product.

Here is the workflow of a typical conversion project.

1. Author workbook with Excel and save as YourApp.xlsx.
2. Drop YourApp.xlsx onto ConvertExcelRT.exe to output YourApp.xml.
3. Open YourApp.xml with ExcelRT Builder to test it.

Before you can follow this workflow, you’ll need to prepare your workbook to
account for some fundamental differences between Excel and ExcelRT. Excel is
optimized to handle very large sheets with many empty cells since this often occurs
during the authoring process. The performance of ExcelRT depends on the total
number of cells on each sheet, even those that contain no data.

Before attempting to use ConvertExcelRT, determine the minimum columns and
rows required on each sheet. Use the Overview feature to restricted the converted
cell range to greatly minimize file size and processing time.

Use and test your workbook like a user, then return to Step 1 to improve it. If you
examine YourApp.xml with a text editor, you will notice that it contains XML
formatted text data. You may not want to distribute that file to a user since all of
your formulas and formatting data would be exposed. Before distribution to a user,
you’ll want to convert the XML file to an encrypted binary file as described in the
Deploy ExcelRT chapter.

ConvertExcelRT
ConvertExcelRT is a tool used by a developer to
convert an Excel workbook to an ExcelRT file.

It uses a programming interface provided by
Microsoft to extract data from an Excel workbook that
is saved in .xls or .xlsx format. That programming
interface largely determines what data can be
extracted and how long the conversion process takes.

The number of used columns times the number of used rows on each sheet will
determine the total number of cells. Since a workbook may contain many sheets, the
total cell count can grow large.

Chapter 2: Develop ExcelRT

2-2

As the total cell count grows linearly, the ConvertExcelRT processing times grows
exponentially. A conversion project usually takes numerous iterations. For each
iteration, the developer updates the workbook in Excel and converts it to an XML
file that can be opened into ExcelRT.

At some point, the XML file becomes the source document for your project and all
editing changes thereafter are done with ExcelRT Builder.

While a fast computer with plenty of RAM can speed the conversion of an Excel
file, other strategies are needed to convert a large Excel workbook to ExcelRT.

• Divide and Conquer - Use the Overview dialog to process one sheet at a
time and work out the issues with that sheet. Reduce processing time by
unchecking optional conversion features like Cell Validation, Cell Borders
and Format Rules when attempting to isolate and resolve a specific
problem.

• Make it Work, then Make it Pretty - Show all sheets, column labels and

gridlines while you focus on making the workbook functional. There is no
need to hide formulas in Excel since there are not visible in an encrypted
ExcelRT file.

• Experiment on Something Small - Since workbook size dramatically

affects processing time, experiment or troubleshoot problems using a small
workbook that converts quickly.

• Use Cell Lock - Clear this option until issues in the conversion process

have been resolved so you can select and view cell properties in ExcelRT.

When launched, ConvertExcelRT presents a window with preferences that
determine how a workbook file is processed. Preference data is read from file
ConvertExcelRT.ini on launch and saved when quitting the application.

C:\Users\YourAccount\Appdata\Roaming\Excel Software\ConvertExcelRT.ini

To process a workbook, click the Convert button and select the .xls or .xlsx file.
When completed, ConvertExcelRT outputs a file with the same name but .xml
extension, then quits itself. Once processing begins you can terminate it by holding
down the Shift and Ctrl keys and waiting for a few seconds.

Chapter 2: Develop ExcelRT

2-3

ConvertExcelRT Main Window

Once you have experimented with and set options the way you want, you can
process a file by simply dragging and dropping it onto the ConvertExcelRT shortcut
or application icon.

The Window Size options in ConvertExcelRT allow you to control the minimum and
maximum window height and width or maximize the window to fit the user’s screen.

Overview Dialog
To prepare your workbook, delete unused columns and rows to minimize the number
of cells. The Overview checkbox allows a developer to determine how many cells
Excel is using on each sheet or to process a specific sheet to troubleshoot an issue.

Set the Overview checkbox in the ConvertExcelRT window. Now when you
process a workbook, an Overview dialog is presented with information about each
sheet and the maximum number of columns and rows it requires.

Overview Determines Which Sheets and Cell Ranges are Processed

Chapter 2: Develop ExcelRT

2-4

Sheet names listed in the dialog are colored green, black or red. Red sheets have
many cells and will take a long time to process. They’ll take a long time to open in
ExcelRT and if they are too big they may not open at all, especially if the user has an
older computer with limited RAM. Try to reduce the cell count before attempting to
convert those sheets.

Use the Overview dialog to process and troubleshoot one sheet at a time in a large
workbook. The Limit Cells checkbox can be useful when troubleshooting an issue
on a specific sheet. For example, assume your sheet has thousands of cells and takes
an hour to process. To experiment with formatting options in cell B2, you could
limit processing to 2 columns and 2 rows and reduce processing time to seconds.

Keep in mind that your workbook will not function properly and ExcelRT may even
crash when processing just a portion of the sheet especially if a cell references
another cell outside of that range.

Use the Columns and Rows fields for each sheet listed in the Overview window to
restrict the sheet size. If the bottom right cell used on Sheet 1 is G22, then type G in
the Columns field and 22 in the Rows field for that sheet in the list of sheets.

ExcelRT Design Mode
The conversion process creates an XML file that can be opened into ExcelRT in
Design mode. The File menu contains several commands like Cell Edit that may be
helpful during the conversion process.

Cell Edit
To present the Cell Edit dialog, select a cell and choose Cell Edit from the File
menu. Early in the conversion process, you may want to clear the Cell Lock
checkbox in the ConvertExcelRT tool. Unless you are using ExcelRT Builder, you
cannot select a cell to view Cell Data unless that cell is editable.

Design for 100% Zoom
Design your sheets to display nicely at 100% Zoom in Excel. Sheets in ExcelRT are
always displayed at 100% scale. Since the same text displayed by Excel and
ExcelRT may vary slightly in size, wrapping may occur at a slightly different
location. You may need to make cosmetic adjustments in Excel before running
ConvertExcelRT.

Chapter 2: Develop ExcelRT

2-5

Pictures
Excel allows a developer to paste images of various formats into sheets and then
resize and position them. Different image formats handle transparency in different
ways to allow background cell text and colors to show through.

ConvertExcelRT uses a Windows API command to extract those images into an
XML file. The API command imposes some restrictions on the quality of the
resulting image. ConvertExcelRT has Picture Format, Scale and Picture Storage
options that a developer can experiment with to achieve the best conversion results.

For best results, set your sheets at 100% zoom and use an image in the Excel
workbook that requires no scaling. Clear the Scale checkbox in ConvertExcelRT
since that can degrade the image quality.

If your workbook uses a bitmap type image using BMP, JPG or GIF format, set the
Bitmap radio button, otherwise set the Picture radio button in ConvertExcelRT. The
Picture Storage option determines the storage size of the picture in the XML
document. TIFF is often the best option for good quality at the smallest file size.

If transparency of your image is not retained during the conversion process, then
consider setting the transparent areas of your image to pure white before pasting it
into the Excel Workbook. Set the Transparent White checkbox in ConvertExcelRT
before processing the workbook.

Large or multiple images in a workbook can negatively affect performance in
ExcelRT. For some projects it is easier to delete or ignore pictures in the original
Excel workbook, then add them after conversion using ExcelRT Builder.

Tables
Excel supports tables to apply special formatting and Sort and Filter features to a
range of cells. Some of the style and layout options are intended for a designer that
is creating the workbook, but other features like Filter columns are intended for the
user of a workbook. There are feature and cosmetic differences between Excel
versions and platforms (Mac and Windows).

ExcelRT supports the basic user features of Excel tables. The user cannot alter the
style or size of the table, but can enter data, sort and filter it as intended by the
designer. In Design mode, you’ll notice a Table command on the File menu allows
the designer to view and even change table configuration parameters.

Chapter 2: Develop ExcelRT

2-6

Unlike Excel, ExcelRT cannot infer the type of data in a cell. Unless specified with a
Validation rule, it assumes all data is just plain text. If your table contains date or
numeric values, Filter options will not work as expected until you assign a
Validation rule to each cell so ExcelRT knows what type of data it contains.

Assume you have a table in an Excel workbook that contains a column of dates, but
you have not yet assigned any validation rules to those cells. If you type 1/1/2016
into a cell, Excel internally stores the value 42370 to represent that date value. By
inferring the data type of that cell, Excel allows you to type a familiar date format
and displays the value with a date format, even through it is storing a numeric value
in the cell.

Now assume you convert this workbook to an XML file and open it into ExcelRT.
Cells with existing date values will display as a number. If you type a new date like
1/2/2016 that text is stored in the cell. If you present the Filter dialog by clicking in
the top header column, date comparison features will not work as expected. For
tables to work correctly, you must assign a validation rule to each user entered value.

Encrypted File
When launched, ExcelRT starts in Design mode if an XML file is opened. If the
user opens an ERT file, it opens in User mode.

In Design mode, choose the Save Encrypted command from the File menu to
output an encrypted file with ERT extension. This command presents a dialog to
customize features available to the user.

When ExcelRT is in Design mode with an unprotected .xml file open, a developer
can examine the properties of a cell with the Cell Edit command. Before outputting
a .ert file, use the Build Dependency command if you have made any manual cell
editing changes.

From Design mode, the recalculation algorithm can be changed from a command on
the File menu. For most workbooks, Sheet Recalculation works fine and is much
faster.

When your product is finished, tested and ready for distribution you will probably
want to add licensing and user interface features to it as described in the Deploy
ExcelRT chapter.

Exceptions
During development, you may encounter an exception that causes ConvertExcelRT
or ExcelRT to crash. An exception can be triggered by a programming error in one
of those applications, using an unsupported Excel feature or reference errors within
your workbook.

Chapter 2: Develop ExcelRT

2-7

If your workbook works fine in Excel but crashes ExcelRT, you will likely need
to make a design change in your Excel workbook to correct the problem.

For example, ConvertExcelRT attempts to guess how many columns and rows are
required on each sheet based on cells that contain data. You’ll see the value of those
guesses in the Overview windows. A sheet with too many cells may cause an
exception during the conversion process or later when opening it into ExcelRT.
From the Overview dialog, restrict the number of Columns and Rows on each sheet
to the minimum required.

When defining filters or conditional rules you can enter a range beyond the number
of columns and rows required by the sheet. ExcelRT does not do graceful range
checking so an exception will occur when referencing a cell outside of the defined
column and row limits of a sheet. This type of error should be caught and fixed
when testing your workbook so a user never sees an exception.

Performance
Excel has been under development for decades and is highly optimized for
performance of calculations, file size and read and write time especially on large
sparsely populated workbooks. Your first attempt to convert a workbook to
ExcelRT may result in a much larger file that opens slowly and takes longer to
calculate.

There are likely to be several design improvements you can make to dramatically
improve performance. The total cell count and calculation algorithm used will likely
have the biggest impact on performance.

Assume you have a sheet with 20 visible columns and 80 rows. Perhaps below those
cells you use some hidden rows to do intermediate calculations in an area 80
columns wide by 20 rows. This sheet requires 80 columns by 100 rows or 8,000
cells.

Now assume those same hidden cells were placed in a 20 column wide by 80 row
tall area directly to the right of the visible cells. Now the sheet requires 40 columns
by 80 or 3200 cells. The file size may be 60% smaller and the calculation
performance substantially better.

When encrypting an XML file to ERT format for distribution, it also compresses the
file size by as much as 80%. This can dramatically reduce open and save time.

Refer to the Recalculation Algorithm section to learn how to dramatically improve
data entry performance.

Chapter 2: Develop ExcelRT

2-8

Feature Differences
ExcelRT generally replicates the runtime features of Excel, but some of the more
advanced or specialized features are not supported. Excel often supports multiple
ways of doing the same thing, but ExcelRT may only support one approach. A
workbook that runs fine in Excel may require modifications for use by ExcelRT.

Cell Format
Excel formats cell data using a format string. If you present the Format Cells dialog
for a selected cell, the developer can choose from Categories like Number, Currency,
Date, Time, Percentage, Fraction, etc. A developer can even create custom formats.

ExcelRT uses the same format string to format its cells. Most predefined formats
provided by Excel should also work in ExcelRT, but some custom formats may not
work as expected. Use Currency instead of Accounting formats. In addition to the
Text Format string, ExcelRT may require other options like Left or Right justify to
get the exact data presentation you want.

Functions
Excel supports a huge list of functions that can be used within formulas. ExcelRT
implements the most commonly used functions that have been supported by Excel
for many years. Unsupported functions pop up a message dialog in ExcelRT.

When using ExcelRT Builder, the Function Help dialog can be presented from the
Toolbar. This dialog shows an alphabetical list of all supported functions.

Range References
Excel supports range references like A1:C5 that can be used within a parameter of
several functions. ExcelRT also supports range references, but only when used as
the complete parameter.

For example, Excel allows the formula =SUM(A1:C5 + D7), while ExcelRT
requires that the formula be rewritten as =SUM(A1:C5,D7). Notice how Excel
allows the range to be used as part of a calculation, while ExcelRT requires that it be
the entire parameter.

Range Reference Function
ExcelRT does not support a function used to define a range reference. For example,
the range B2:INDEX(Fruit,5,3) is not supported.

Chapter 2: Develop ExcelRT

2-9

3D References
Excel supports 3D references where you can do something to a cell or even to a
range of cells across multiple sheets. For example Sheet1:Sheet3!A5 references
cell A5 on Sheet1, Sheet2 and Sheet3.

ExcelRT also supports 3D references as long as that reference comprises the entire
parameter of a function. For example, =SUM(Sheet1:Sheet3!A5 + D7) is not
supported, however =SUM(Sheet1:Sheet3!A5,D7) is supported.

Formula Parameter Nesting
Excel allows an expression =FLOOR(A4,1)=TODAY()-1, but ExcelRT requires it to
be rewritten as =FLOOR(A4,1)=(TODAY()-1). Notice the extra parens around the
part after the equal sign to ensure that part of the expression is evaluated before the
logical comparison is made. ConvertExcelRT adds the extra parameters for you to
the original formulas, but you’ll need to add you own when manually changing a
formula within ExcelRT.

Calculation Precedence
Excel gives precedence to * and / over + and - in a calculation. ExcelRT processes
calculations left to right unless you include parens. Therefore, the calculation
=1+C3*5 from Excel, needs to be converted to =1+(C3*5) to give the same result in
ExcelRT.

Range Selection
Excel allows an author to select and do operations on an individual cell or a range of
cells. ExcelRT allows the user to select or edit one cell value at a time. An ExcelRT
user is not changing the workbook, just entering and viewing data.

Data Entry
As an authoring tool, Excel tries to guess the type of data entered by a user (Text,
Numeric, Date, Time, etc.) and assigns an appropriate cell format. For example, a
time is internally stored as a floating-point number, but displayed using date and
time formatting. Sometimes Excel will guess wrong leading to undesired formats or
error conditions. ExcelRT doesn’t attempt to guess the format so data is displayed
exactly as entered unless the developer has assigned a specific format.

Array Formulas
Array formulas were recently added to Excel, but are not supported in ExcelRT.

Chapter 2: Develop ExcelRT

2-10

Data Validation
Using Excel, a developer can assign data validation rules to user entered data. That
is especially important for ExcelRT so it can accept user-entered data and store it
correctly. For the correct display and entry of a date like 1/25/1960, the cell must
have a date format and a validation rule that only accepts a date entry.

Pictures & Form Controls
ExcelRT supports pictures and form controls added to an Excel document. Within
ExcelRT runtime environment, these objects that cannot be moved or resized except
by scrolling cells left or right or resizing columns or rows.

The Transparent White option in ConvertExcelRT determines whether of not the
white color in a picture is transparent allowing the background cell data to show
through. If the picture contains some white color that you don’t want to be
transparent make that color slightly off-white with an image editor before adding it
to your Excel document.

Background Images
Excel has the ability to assign a background image to each sheet that shows through
from behind the cells. ConvertExcelRT cannot extract the background image from
an Excel document.

In some cases a large background image within your Excel document may slow
processing within ConvertExcelRT. Once you have created the XML file, use the
Background Image command from the File menu in ExcelRT to add a background
image if needed. ExcelRT Builder has a button in the Toolbar to add or remove a
background image. Since you’ll need to do this after each conversion, ignore the
background until all other conversion issues have been addressed.

Structured Table References
Excel supports structured references within cells to refer to a column of cells. For
example, Table1[ColumnName1] identifies a range of cells in a table named
Table1 for a column with header name ColumnName1. If the referencing cell is
within the table, you can omit the table name and just use [ColumnName1].

ExcelRT also supports basic structured table column references like this. Excel also
supports more complex references like [@ColName] or [#RowName] or
Table1[[#Total],[SaleAmt]] but these are not supported by ExcelRT.

Chapter 2: Develop ExcelRT

2-11

Text Across Cells
Excel allows text to be displayed across multiple cells, either by merging those cells
or just allowing text from one cell to spill across to other cells. ExcelRT supports
merged cells. ExcelRT truncates text if it doesn’t fit within its assigned cell. From
Excel, select the range of cells required to display the text and select the Merge
Cells command from the ribbon.

Stylized Text
Excel allows different words within cell text to have different fonts styles and colors.
For example, The Red Cat could have the word Red in red color with bold italics
and the rest in black color with plain text. ExcelRT supports a single font style and
color that applies to all text in the cell.

Within Excel, if you apply multiple styles or insert a carriage return within the text
of a cell, then the style information is stored in different way within the workbook
and cannot be extracted by ConvertExcelRT. The result is black text on a white
background where all style information for that cell is lost.

To fix a cell with mixed styles within Excel, copy and paste the text into NotePad.
Make sure all carriage returns are removed so the text is on one line. Now copy and
paste it back into the workbook cell.

Within Excel it is possible to merge several cells, add text and then use different
styles and carriage returns to format that text. This approach won’t work with
ExcelRT. To accomplish the same thing, put parts of that text into different
unmerged cells and then apply a single style to each cell.

Unicode Text
Cells containing text use the General format in Excel. By default, ExcelRT assumes
that a cell with the General format only contains ASCII text. Some human
languages like Kanji or special characters require multiple bytes to store each
character. Use the Unicode format to read and write cell values that can store non-
ASCII text.

During the conversion process, ConvertExcelRT can replace all cell formats of
General with Unicode. Alternatively, assign the FormatCells script command to the
OnOpen event to assign the Unicode format to a specified range of cells. The
Unicode format may affect file size and read and write time for a large workbook.

Chapter 2: Develop ExcelRT

2-12

Recalculation Algorithm
When ConvertExcelRT generates an XML file, it defaults to recalculating all cells
on all sheets when any cell value is changed. That approach works fine for small
workbooks, but may become unbearably slow on large workbooks for data entry.

Change Recalculation Algorithm Saved with File

The Recalculation Algorithm dialog is presented from the File menu in ExcelRT.
Sheet recalculation is substantially faster for most multi-sheet workbooks. Each
time you generate a new XML file, you’ll need to set the Recalculation Algorithm.
That selection is stored in an ERT file generated for distribution to a customer.

Understanding and optimizing the recalculation algorithm can have a huge impact on
data entry performance for larger workbooks. Recalculation can be controlled by
simple script commands. A script command can recalculate a specific sheet or range
of cells when the user clicks a button or navigates to a sheet.

For example, assume your workbook has three sheets titled Data, Options and
Report. Assume that a large amount of raw data is entered into the Data sheet.
Assume the Options sheet allows the user to select various options that instantly
summaries and display the results. Finally, assume the Report sheet generates a
detailed, printable report of the entered data and options selected.

If you initially use the default Full Recalculation option data entry might be
painfully slow since each entered value triggers a complete recalculation of all cells
across all sheets. That is completely unnecessary since there are no calculated
results displayed on the Data sheet.

Now assume that you default to No Recalculation. On the SheetActivate event for
the Options sheet, run a tiny script that sets the recalculation mode to Sheet
Recalculation. On the SheetDeactivate event for the Options sheet set the
recalculation mode back to No Recalculation. Finally, on the SheetActivate event
for the Report sheet, run a script that generates the detailed report.

Your workbook is now instantly responsive to data entry and user selections.

Chapter 2: Develop ExcelRT

2-13

Design for Performance
Microsoft Excel was designed to be an authoring tool for Mac and Windows
computers, while the design of ExcelRT focused on its role as a spreadsheet
application engine for an application.

By design, an Excel file is very open to user examination and changes to formulas,
formatting rules or the addition of sheets, columns or rows. Spreadsheets with many
rows and columns, but many empty cells have little affect on workbook size or
performance. With ExcelRT, the total cell count has a major effect on performance
regardless of whether cells are empty or contain data.

When an ExcelRT file is saved as an ERT for distribution to a user, the formulas and
formatting rules can no longer be viewed or changed. The user cannot add sheets,
columns or rows unless the designer created a script to implement those features.
The workbook size is highly compressed and encrypted compared to an XML file.

Here are some design rules for optimizing an ExcelRT application. While these
rules apply to desktop apps, but are especially critical for ExcelRT Cloud.

• Minimize the total cell count in the workbook.
• The workbook opens to a Home sheet that should be relatively small.
• Data entry should occur on small sheets to minimize screen redraw time.
• Large sheets should not have editable cells.
• Use recalculation algorithm to improve data entry performance.
• Use a button with script to limit currently visible columns and rows.
• Use Static or Calculate sheets whenever a sheet is always invisible.
• Split one large workbook application into several smaller Apps.
• Share data between Apps through the Plugins folder or via Internet.
• For ExcelRT Cloud apps, minimize the required amount of data entry.

Chapter 2: Develop ExcelRT

2-14

Sheet Type
A workbook can consist of many sheets each containing hundreds or thousands of
cells. Each cell contains data about the cell value, formula, dependencies and
presentation properties. The quantity of cell data has the biggest impact on the size
and performance of an ExcelRT file.

To reduce file size and memory
requirements, ExcelRT supports
three sheet types:

• Standard
• Calculate
• Static

By default, all sheets are Standard and can be shown or hidden from the user. The
cells on a Standard sheet consume the most memory and disk space. If a sheet is
never visible to a user, it should be set to Calculate or Static.

Sheet type does not affect an XML file. While in design mode, the developer can
view and modify cell data regardless of sheet type. When saved as an ERT file,
sheet type determines what cell data is actually stored and later read into memory.
Sheet Type is set from the Workbook Properties dialog by selecting the row of data
for that sheet and clicking the Type button.

A Static sheet only contains the cell value and consumes the least amount of memory
or disk space. It does not contain properties to display the cell to a user or formulas
used for calculating the cell value. The cell value can be changed from a script
command and can be referenced from formulas on other cells.

A Calculate sheet contains cells that do have a formula for calculating the cell value,
but consume much less memory and disk space than a Standard sheet.

Chapter 2: Develop ExcelRT

2-15

Fonts
Text fonts are kind of a big subject that you may not have thought about much.
When authoring an Excel workbook on your local computer for personal use you
may have selected a few fonts that looked good for captions, data entry or notes.

When distributing a document to other users, how text fonts are presented may
depend on their environment such as the Mac or Windows OS version they are
running, what version of Excel they have and want fonts they have installed.

When distributing an App to a large user base, a developer wants consistency
without requiring cosmetic customization by each user.

ExcelRT aims to increase your
distribution options to any
desktop computer or browser
accessing an ExcelRT Cloud
application. ExcelRT has built in
font handling features that
simplify the distribution process.

Each cell in an ExcelRT sheet has
both a Desktop and Web font
assigned to that cell.

Most desktop computers come with standard fonts installed by the OS. The Desktop
Font determines the first choice to use when running an ExcelRT file on a desktop
computer. If the assigned font does not exist, the OS substitutes a different font.

For ExcelRT Cloud, the core spreadsheet grid is constructed on the server and sent
to the local browser for display. While browsers may run on a variety of desktop or
mobile devices, the core spreadsheet looks the same.

Server fonts are different than
Desktop computer fonts. Each
workbook cell can be assigned
a specific Web Font.

When designing an App that
runs in ExcelRT Cloud, create a
sheet with some font and size
variations and then load it into a
browser to see the end result as
illustrated here.

Chapter 2: Develop ExcelRT

2-16

An ExcelRT web application is essentially an ExcelRT file loaded into an ExcelRT
Cloud account. Most developers will likely develop and distribute desktop editions
of their application first and then later focus on a Cloud edition.

The Map Fonts command on the File menu can simplify the assignment of Web
Fonts to all cells in the workbook based on the assigned Desktop Font. With the
Assign Web Font radio selected, select the Desktop fonts used in the workbook on
the left side, assigned a comparable Web Font on the right side, then click OK.

If the Web Font field of a cell is left empty, ExcelRT Cloud will display that cell
value with a default font.

The Map Fonts dialog can also be used to change the Desktop font used by all cells
in the workbook by selecting the Replace Desktop Font radio button. This option
can be useful when testing your App on different Mac or Windows desktop
computers.

Chapter 2: Develop ExcelRT

2-17

Design Mode Interface
The conversion process from an Excel workbook creates an XML file that opens in
Design mode within ExcelRT. ExcelRT Builder also stores the project as an XML
file. A developer can inspect and modify cell data and workbook options using
menu commands or the Builder Ribbon that only exists in Design mode.

While in Design mode, a developer can view the properties of a selected cell. When
starting from an Excel workbook, most properties are assigned during the conversion
process. Reviewing the cell data can help the designer to understand how ExcelRT
works or presents data.

Cell Data for Selected Cell

The Workbook Properties command on the File menu presents a dialog to view or
change sheet title, color, visibility and other properties. During development,
properties can be changed within ExcelRT Builder. For example, you can show or
hide a sheet or click the sheet Title to edit it.

Workbook Properties Dialog

Chapter 2: Develop ExcelRT

2-18

User Mode Interface
The user interface in User
mode is quite simply. The
user can select a cell to edit
data, use the Enter key to
move down the column or
Tab key to move between
columns.

Click on a sheet name
across the top to select the
active sheet. Excel allows
each sheet tab to be colored, while ExcelRT shows that color as a thin bar across the
top of the cell grid.

To give an ERT document to the user, set the Prompt for Save on Close checkbox in
the Save Encrypted Document dialog. The user is prompted to save when closing
ExcelRT. Ignore this checkbox when using QuickLicense or AppProtect. The
Open command on the File menu in the ExcelRT runtime engine is hidden when
generating an App with AddLicense or AppProtect.

If your workbook depends on features added in a newer version of ExcelRT, you can
set the Minimum Version field before generating the ERT file. Set the Report Errors
checkbox to be notified with a dialog if a calculation error occurs.

Most ExcelRT applications provide no editing ribbon to
the user. ExcelRT Cloud does not support a Ribbon.

Set the Ribbon checkbox in the Save Encrypted Document dialog to display a tiny
ribbon of buttons at the top of the ExcelRT window. The user can select a cell and
then click the Bold, Italic or Underline button to apply that style.

Likewise, the cell fill color or font color can be changed to the displayed color in the
button icon. To change the default color, double click on the button icon and select
from a palette of colors.

The column header, row header, horizontal gridlines, vertical gridlines, horizontal
scrollbar and vertical scrollbar can be visible or invisible for each individual sheet in
ExcelRT using the Workbook Properties dialog.

Chapter 2: Develop ExcelRT

2-19

The File menu includes Save, Print and Quit and commands. Set options on the
left side of the dialog from top to bottom to determine the Orientation, default Scale
and which sheets to print. If Selected Sheets is chosen, the user can individually
select sheets to be printed.

Print One More Sheets

Scripting commands can be used to format and construct a desired image for
printing. The Print command can be assigned to run a custom script.

Chapter 2: Develop ExcelRT

2-20

Chapter 2: Develop ExcelRT

2-21

Conversion Checklist
Every Excel workbook will require some editing before it is ready for conversion to
ExcelRT. This checklist can help to ensure that you’ve done the minimal amount of
preparation required before you begin the conversion process. If you don’t
understand a specific item below, review this chapter for more details.

1. Using the Overview window in ConvertExcelRT, limit the number of
converted Rows and Columns on each sheet to the minimum required.

2. Set each cell format so values align horizontally left, center or right.

3. Replace any custom cell formats with one of Excel’s standard formats.

4. Resize columns as needed to fit maximum data width in each cell or

alternatively merge cells to prevent truncated displayed data.

5. Add parens to calculations for formula parameter nesting and calculation
precedence.

6. Move hidden sheets to the right of all unhidden sheets.

7. Every cell on every sheet should be specifically Locked or not Locked on

the Format Cells dialog to determine if it contains a static or editable value.
Early in the conversion process, you may want to clear the Use Cell Lock
checkbox in the ConvertExcelRT application.

8. Add validation rules to editable cells to constrain user input to safe data

ranges and appropriate data types.

9. If recalculations slow data entry, present the Recalculation Algorithm
dialog from ExcelRT to adjust when calculations are performed.

Chapter

3

Program ExcelRT

Microsoft Excel supports custom programming with VBA. ExcelRT does not
support VBA. It does support user or event driven script commands or external
commands. A script command also makes it easy to use Python code in a workbook.

With external commands, features can be added to an ExcelRT desktop application
with a helper application created with virtually any programming language including
Visual Basic, C#, C++, Java, Delphi or Xojo.

A Form Button created on a sheet within the Excel workbook can trigger a button
action. User actions like workbook open, save or close can trigger an event action.

Button Actions
Each button can run one or more script commands also referred to as button actions.
These commands can read and write to the clipboard or text files, import or export a
range of cells as delimited text data or launch an application.

ConvertExcelRT does not generate Button Actions (script commands). To define
these commands in ExcelRT, present the Button Actions dialog from the File menu
while in Design mode. Data from this dialog is stored in a file in the Plugins folder
within the folder holding ExcelRT. Since button actions are stored separately, they
are retained when doing a new conversion to an XML file with ConvertExcelRT.

Chapter 3: Program ExcelRT

3-1

When you click OK in the Button Actions dialog, the button actions are stored in the
ExcelRT file. The commands can be processed when the user clicks a form button
on one of the sheets of the workbook.

When you generate an ERT file with the Save Encrypted Document dialog, you do
not need to distribute the .actions file in the Plugins folder since button actions are
embedded within the file.

For each button that has an action, enter the name of the button, the = character and
one or more action commands separated by the | character. Do not include any extra
spaces. If the same button name appears on multiple sheets within the workbook,
prefix the button name with the sheet name like this SheetName!ButtonName.

ButtonName=Command1|Command2|Command3

To demonstrate, the MsgBox()
command presents a message dialog.

MsgBox(Hello World)

The button with name Button 1 presents
Hello World in a dialog when clicked.

Button 1=MsgBox(Hello World)

When the user clicks the button named
Button 1, the dialog is presented.

Script Commands
Refer to the Script Commands chapter for a description of the most commonly used
script commands.

Chapter 3: Program ExcelRT

3-2

Vendor Commands
ExcelRT Vendor commands are provided by a vendor website for use by customers
using their product or family of products. To enable these additional commands, a
folder of files provided by Excel Software is licensed and downloaded to the
vendor's website. Vendor commands are usually related to Internet, Email or Server
features.

Vendor commands can then be used by any application developed by that vendor
and work like any other ExcelRT command running on any customer computer or
device.

Vendor commands provide convenient email, upload and messaging between
ExcelRT solutions. Give your application dropbox-like file storage to communicate
messages, images, CSV or even ExcelRT files between computers and people.

Server Setup
The ExcelRT Vendor Commands PDF includes instructions to upload a set of files
and folders to a Linux or Windows website that supports PHP 5.4 or later. There are
some optional PHP and Server parameters that can be adjusted to increase the
maximum supported file size which is determined by your website hosting account.

You can optionally enable logging to record a timestamp log of vendor command
calls from your ExcelRT applications. You can even send your own log commands
from ExcelRT that can be helpful for debugging purposes since the logs can be
conveniently displayed in a web browser.

ExcelRT commands in your application communicate with PHP files stored on your
website to send email, upload files and support other features. After placing the files
on your site, you will have two URLs that get used by the vendor commands.

• ServerURL
• StorageURL

RegisterServer
This command registers a server to implement all other commands in this section.
An ExcelRT script will typically call this command once in the OnOpen event. You
could use multiple servers by calling this command again when any commands that
follow will use that server.

RegisterServer(ServerURL)

Chapter 3: Program ExcelRT

3-3

Log
This command logs the supplied Data value to the server if logging has been turned
ON. For example, your script could retrieve the user's Serial Number and log it each
time an ExcelRT file is opened.

Log(Data)

Data can be any plain text or the name of a variable that contains text.

Upload
This command is used to upload a file from the Plugins folder on the device running
ExcelRT to the upload folder on your website. FileName is the name of a file in
the Plugins folder.

ResultVar is the name of a variable into which the return status of the command is
stored. If the command is successful, the word SUCCESS is returned, otherwise the
response string starts with FAILED.

UploadPluginFile(FileName,ResultVar)

This example uploads Report.jpg from the device to the upload folder on your
website.

UploadPluginFile(Report.jpg,Result)

This command will deleted the named file from the upload folder on your website.
If the file was found, ResultVar will contain SUCCESS. If the file was not found,
then ResultVar will contain FAILED.

UploadPluginFileDelete(FileName,ResultVar)

Email
There are three commands for sending email. The EmailSend and EmailSimple
commands use your local web server to send an email. The EmailServer command
forwards the email message to a remote email server that sends the message.

As useful as email is, it is not always a reliable communication mechanism since
there are multiple nodes in the process that can affect the outcome and are beyond
your control.

Chapter 3: Program ExcelRT

3-4

The server hosting your website will determine how quickly the email message gets
sent out or if it get sent at all. Some shared hosting plans will queue outgoing email
messages for several minutes or sometimes over an hour before they get sent. The
receiving ISP gets to decide whether or receive or reject your email message or to
potentially send it to a spam folder.

This command will send an email message to one or more recipients. The message
may have one or more attached files from the Plugins folder on the device running
ExcelRT. FromEmail is the sender email address. FromName is the sender name
and can be an empty parameter.

ToEmail is the receiver email address. To send the same message to multiple email
addresses, separate each email address with a semicolon in the parameter as
illustrated here: excel@spinn.net;excelsw@cox.net.

Subject is the subject line of the email message. Body is the text within the body of
the email message.

The Attachments parameter is zero or more semicolon-separated filenames from the
Plugins folder of the sending device.

ResultVar is the name of a variable into which the return status of the command is
stored. If the command is successful, the word SUCCESS is returned, otherwise the
response string starts with FAILED.

EmailSend(FromEmail,FromName,ToEmail,Subject,Body,
Attachments,ResultVar)

Here is an example of this command.

EmailSend(hwh@spinn.net,Frank,excel@spinn.net,Subject,My
Message,File1.jpg;File2.jpg,Result)

Do not use commas within the body of an email message. To include multiple lines
in the email message, use a variable named Message in this example that contains
text with the # character to represent a carriage return as illustrated here. If you must
include a comma in the body of an email message, use ~ instead and it will be
replaced by a comma.

DefineVar(Message,Hello Tom##Third Line#Fourth Line##Regards#John Doe)

Chapter 3: Program ExcelRT

3-5

The body of the email message will appear like this:

Hello Tom

Third Line
Fourth Line

Regards
John Doe

By default, the EmailSend command assumes that you are sending a Plain text
message. If you want to use HTML formatting tags, then enclose the Body of the
email text with <html> and </html> tags as illustrated here.

EmailSend(hwh@spinn.net,Frank,excel@spinn.net,Subject,<html>Hi Tom<p>How is it
going?<p>Regards~
Excel Software</html>,,Result)

The EmailSimple command has less features but is likely to be supported by more
hosting accounts. It does not have a FromName or Attachments parameter. The
Body parameter can only contain plain ASCII text, no HTML formatting is allowed.
The ToEmail parameter can only have one email address.

EmailSimple(FromEmail,ToEmail,Subject,Body,ResultVar)

EmailServer
The EmailServer command offers the most flexibility for sending email by connecting to the
email server of your choice. If your website does not have a working mail server installed, it may
be your only choice.

EmailServer(Host,User,Pswd,Port,FromEmail,FromName,ToEmail,Subject,Body,Attachme
nts,Html,ResultVar)

This command will send an email message to one or more recipients using a remote
email server like Gmail, Yahoo or your company email address.

The message may have one or more attached files from the Plugins folder on the
device running ExcelRT. Host, User, Pswd and Port provide the credentials required
to connect to that server. FromName is the sender name and can be an empty
parameter.

ToEmail is the receiver email address. To send the same message to multiple email
addresses, separate each email address with a semicolon.

Subject is the subject line of the email message and Body is the text within message.
The Attachments parameter is zero or more semicolon-separated filenames from the
Plugins folder.

Chapter 3: Program ExcelRT

3-6

Set the Html field to YES when sending HTML formatted text in the Body of the
email message.

ResultVar is the name of a variable into which the return status of the command is
stored. If the command is successful, the word SUCCESS is returned, otherwise the
response string starts with FAILED.

For testing purposes, if you are unable to communicate with the server assign the
value YES in the ResultVar variable when calling this command and a stream of
communication messages with the server will be presented in a popup window

Here is an example of how to send an email with the EmailServer command using a
Gmail account with an App Password.

EmailServer(smtp.gmail.com,john@gmail.com,abcd efgh ijkl
mnop,587,john@gmail.com,MyCompany,excel@spinn.net,Test,My
Message,File1.jpg,,Result)

Most email servers publish the host name and port number (usually 587) required for
an external mail client to send email through the server. The User field is almost
always your email address. The Password field can be a simply password used to
log into your email account or a special App Password that you create from an
Admin screen for that email service.

Some email servers (Yahoo or Gmail) will only allow access using an App Password
that you create within your account. To create an App Password within your Gmail
account, first enable 2-factor authentication. Now you can create an App Password
and use it in the Pswd parameter.

Here are some email server examples:

• Yahoo - Host is smtp.mail.yahoo.com and Pswd is your App Password.
Create an App Password in your Yahoo account.

• Gmail - Host is mail.gmail.com and Pswd is your App Password. You must

first enable 2-Factor Authentication. Now create an App Password in your
Google account.

• Cox - Host is smtp.cox.net and Pswd is your login password.

• Zianet - Host is mail.zianet.com and Pswd is your login password.

Some email servers may reject email messages sent from your specific website even
if the server credentials are correct. Use the Debug parameter to help troubleshoot
the issue or contact the company that provides that email service.

Chapter 3: Program ExcelRT

3-7

Storage
This command provides a customer storage folder on your website for a period of
time. Your application can use the storage location to transfer files between
computers and people with minimal effort by application users. Those files could be
images, reports, CSV data files, etc. using file extensions like .jpg and .csv. Once
ExcelRT Commands are setup on your server, the system is designed to be self-
managed as long as you don't run out of disk space.

PluginToStorage(StorageURL,DaysToStore,FileList,Message,DownloadURL,Result)

StorageURL is the URL of a storage folder on your website. It can be located
anywhere on the same website. That URL is the first part of a web page URL
provided to people receiving the shared files.

FileList can be a string or variable containing a string with one or more semicolon
separated file names from the Plugins folder. Each file name must be a valid file
name on all computer platforms, must include a 3 character file extension like .jpg,
.csv, etc and the name must not contain the dash "-" character.

The DaysToStore value indicates how long the files will be stored on your server
until they are automatically deleted. Use 1 to 1000 to indicate the number of days or
use 0 to store files forever.

Message is plain or HTML formatted text within the body of the web page generated
for the receiver of the uploaded files. The DownloadURL is the name of a variable
into which a URL is stored that references a generated web page linked to the stored
files. Result is the name of a variable into which SUCCESS or FAILED is returned.

In special situations where many files need to be uploaded or collectively the files
are too large to upload with one command, the PluginToStorageAdd command
allows an additional file to be appended to an existing DownloadURL.

This command must follow the PluginToStorage command. The DownloadURL
must reference a download URL that has not expired. The list of file links in the
download page is extended each time a new file is added.

PluginToStorageAdd(StorageURL,FileName,DownloadURL,Result)

This command is used to delete the referenced DownloadURL and all files that it
references. Generally you don't need to use this command since it will expire
anyway based on the DaysToStore parameter used to create it.

PluginToStorageDelete(StorageURL,DownloadURL,Result)

Chapter 3: Program ExcelRT

3-8

Message
These commands are used to send messages between ExcelRT application users.
For example, imagine you have created three ExcelRT applications named Manager,
Office and Agent. Perhaps roaming project estimators use the Agent app. After
collecting data from the customer into the app, an Agent can hit a button to send a
message to the Manager to review the quote. Once accepted, the Manager app sends
a message to the Agent to issue the customer quote. At that point a message is sent
to the Office app to send a PO, purchase supplies, issue a work order, etc.

To send or receive messages, the ExcelRT file must first call the MessageAccept
command to register the Organization name and a ToList. The Organization and
ToList parameters can be literal strings or the name of a variable that contains the
string. In the example mentioned above, you might sell your Manager, Office and
Agent apps to IBM, HP, GTE and other companies so their messages need to be
handled separately on your website.

All messages are sent from and received by users within the same organization. The
ToList parameter contains one or more semicolon separated individual or group
names. Create and use any alphanumeric (a..z,A..Z,0..9) names you want. All
Group names begin with the word Group and can be received by multiple users.

MessageAccept(Organization,ToList)

In this example, the organization name is IBM. Boss and John are individual user
names while GroupAgent might be used to send a message to multiple users that
want to accept GroupAgent messages.

MessageAccept(IBM,Boss;John;GroupAgent)

The MessageAccept command needs to only be called once usually from an OnOpen
event. If you close and reopen an ExcelRT file, it remembers your Organization and
ToList. When you call the MessageAccept command, the file is saved.

If you want the system to generate a unique user name for you, call this command
where UserID is the variable name that will contain the assigned name. The
assigned name can be saved in a global variable like $MyUserName or within a cell
in the workbook and then read and used in the future.

MessageAssignUser(UserID)

Chapter 3: Program ExcelRT

3-9

The MessageSend command will send a message from the user specified by the
From parameter to the user or group specified by the To parameter. The Days
parameter should be an integer value that determines when a message is
automatically deleted by the system whether it has been received or not. Give it the
number 10 to self-delete after 10 days.

The Type and Body parameters are arbitrary text that you provide. This can be
anything you want except for the ; character. The From,To,Days,Type and Body
parameters may be a literal string or the name of a variable. The MessageID
parameter is the name of a variable into which the generated MessageID is stored.

MessageSend(From,To,Days,Type,Body,MessageID)

For the most part, your application doesn't need to delete messages that it generates
since they expire after some time period anyway. A message sent to a specific user is
deleted as soon as that user gets the message. Multiple uses may accept a group
message, so it is not deleted when a specific user gets it.

To delete a message that you have sent, use the MessageID received during the
MessageSend command. Call the MessageDelete command with that parameter.

MessageDelete(MessageID)

The MessageGet command returns the next available message that your application
is accepting. All the parameters in this command are variable names. If Result
returns SUCCESS, the other parameters provide the message details. If Result
returns NONE, no message is available.

MessageGet(To,From,Type,DateTime,Body,Result)

Most applications will not call the MessageGet command directly. Instead, add an
OnMessage event that runs a script to respond to incoming messages. If your script
contains an OnMessage event, then once a minute ExcelRT will automatically poll
for existing messages and call your script to process it if one is found. Use this
command to get the data of the retrieved message. All parameters are variable
names and exactly match those in the MessageGet command.

MessageReceived(To,From,Type,DateTime,Body,Result)

Chapter 3: Program ExcelRT

3-10

Here is an example script that polls for a message each minute, then pops up the
Body of the message in a dialog if one is found.

OnMessage=MessageReceived(To,From,Type,DateTime,Body,Result)|MsgBox(Body)

By default, your application will automatically poll for messages sent to the ToList
in your MessageAccept command if your script contains an OnMessage event. You
can disable that polling process by calling the MessageState command with OFF for
the State parameter or enable it again with ON for the State parameter.

MessageState(State)

If your application disables polling and then enables it again later, all messages sent
during that time interval are ignored. For example, imagine you go on a two-week
vacation. When you return you might want to click a button in your app that calls
MessageState(OFF) and then MessageState(ON) to discard all messages sent while
you were away.

EXAMPLE

This example script registers your website to handle ExcelRT Vendor commands. It
registers your organization and a couple users, then sends a message when you click
Button 1 on the workbook sheet. Within a minute, you should see a dialog presented
that says "Work Harder".

OnOpen=RegisterServer(http://www.yourdomain.com)|MessageAccept(IBM,Boss;GroupWorker)
OnMessage=MessageReceived(To,From,Type,DateTime,Body,Result)|MsgBox(Body)
Button 1=MessageSend(Boss,GroupWorker,2,Urgent,Work Harder,MessageID)

In real life the Boss and Workers might be running on different computers or devices
located in different cities.

Query
This ExcelRT command is used to query a formatted text file on a website for a
matching row of data, then return one or more delimiter separated fields of data from
that row.

The Query command requires that your script has already registered your website
with the RegisterServer command.

RegisterServer(ServerURL)

The Query command assumes that query.php and the data file referred to by the
DataFile parameter are stored in the excelrt_commands folder on the vendor website.

Chapter 3: Program ExcelRT

3-11

Query(DataFile,RowDelimiter,ColDelimiter,MatchField,MatchValue,ResultDelimiter,StatusV
ar,ResultVar,Field1,Field2,…)

• DataFile is the file name containing the data that resides in the same folder

as the PHP file.
• RowDelimiter is CR, LF or CRLF.
• ColDelimiter is COMMA, SEMICOLON or TAB.
• MatchField is the name of the field to match.
• MatchValue is the value of the named field to match.
• ResultDelimiter is the delimiter used to separate result values including

COMMA or SEMICOLON.
• Status is a variable that stores the status of the command of SUCCESS,

FAILED or NOMATCH.
• ResultVar is the variable name where the result is stored.
• FieldX can be one or more named fields separated by commas for which the

value is returned in the ResultVar parameter.

Example: Test.txt

ZipCode Material Labor Equipment
01001 0 21 0
01002 5 15 2
01003 4 15 1

Assume this file uses CRLF to separate rows, a Tab to separate columns and you
want the Labor and Equipment values separated by a semicolon for the ZipCode
01002.

Use this command:

Query(Test.txt,CRLF,TAB,ZipCode,01002,SEMICOLON,StatusVar,ResultVar,Labor,Equip
ment)

The following value is returned in ResultVar variable and SUCCESS in StatusVar.

15;2

Chapter 3: Program ExcelRT

3-12

PythonServer
This ExcelRT command runs a Python script on a server from a desktop application
or ExcelRT Cloud. The user does not need to install Python.

PythonServer(Script,Input,Output,ScriptDataVar*,InputDataVar*)

Run a Python script on a server giving it an optional Input parameter and storing the
results in the Output parameter. Script refers to an existing script on the server to
run. Input is a short input parameter sent to that script.

ScriptDataVar is an optional variable containing Python script commands to be sent
to the server that are temporarily stored in a file and run. InputDataVar is an
optional variable containing data sent to server and temporarily stored in file then
read from the script.

As with all ExcelRT Vendor commands, your script must first register the server.

Cloud Sharing
A Cloud button on the Open Data File window of an ExcelRT based application can
access a Cloud Sharing account. That feature is used to share or backup ExcelRT
workbook files between computers and users.

This section describes how to programmatically access almost any type of file in a
Cloud Sharing account from within an ExcelRT workbook using script commands.

To access a Cloud Sharing account, you will need the Cloud ID and either a Read or
Write password. To upload or delete files, you will need the Write password. This
command returns the file count, allowed number of files, allowed file size, list of file
names, file access and status into named variables.

CloudSharing(CloudID,CloudPswd,FileCountVar,FileAllowedVar,FileSizeVar,FileListVar,Ac
cessVar,StatusVar)

The FileList is a | separated string of file names. If StatusVar contains SUCCESS,
then AccessVar contains the value READ, WRITE or SUSPEND. If an error
occurs, StatusVar contains FAILED, NOVENDOR, NOACCOUNT or
BADPASSWORD.

This command deletes a named file from a Cloud Sharing account provided the
correct Cloud ID and Write password is supplied. StatusVar returns SUCCESS,
FAILED, NOVENDOR, NOACCOUNT or BADPASSWORD.

CloudDelete(FileName,CloudID,CloudPswd,StatusVar)

Chapter 3: Program ExcelRT

3-13

This command downloads a file from a Cloud Sharing account into the Plugin
folder. StatusVar returns SUCCESS, FAILED, NOVENDOR, NOACCOUNT or
BADPASSWORD.

PluginFileFromCloud(FileName,CloudID,CloudPswd,StatusVar)

This command uploads a file to a Cloud Sharing account from the Plugin folder.
StatusVar returns SUCCESS, FAILED, NOVENDOR, NOACCOUNT or
BADPASSWORD.

PluginFileToCloud(FileName,CloudID,CloudPswd,StatusVar)

This command presents a window to view, upload, download and delete files of
specified type in a Cloud Sharing account.

CloudViewer(CloudID,CloudPswd,Title,FileTypes,Btns)

CloudID identifies the Cloud Sharing account. CloudPswd can be the Read or Write
password for that account. If the Read password is provided, the Upload and Delete
buttons are disabled.

The Title field names the dialog that lists files from the Cloud Sharing account.
FileTypes is a list of one or more semicolon separated file extensions of the form.
Only those file types are display or can be uploaded by clicking the Upload button
and selecting a file from disk.

.jpg;.png

Refer to the Cloud Sharing User Guide for a complete list of supported file types.

Chapter 3: Program ExcelRT

3-14

Settings Dialog
An ExcelRT file usually runs
within a product that includes
licensing features and the Open
Data File interface window. That
window has buttons to manage
ExcelRT files.

The Settings button presents a
developer-configured dialog to
collect data from the user.

The Settings dialog is configured from AddLicense. The Settings dialog allows the
App user to enter or change data from one location, then use that data from all
workbook files created with that App. Refer to the QuickLicense User Guide for
detailed information.

Setting data is easily accessible to an ExcelRT file using one of these two
commands.

SettingsLoad(FieldName1,CellRef1,FieldName2,CellRef2,…)
SettingsRead(FieldName1,VarName1,FieldName2,VarName2,…)

The SettingsLoad command loads one or more workbook cells with user-entered
data from the Settings dialog based on developer-configured field names. The
SettingsRead command reads the field values into a named variable instead of a cell.

Chapter 3: Program ExcelRT

3-15

Event Actions
Event actions can also be defined in the Button Actions dialog. Event actions are
triggered when a document is opened, saved, closed or at specific time intervals.

The available event action names are:

• OnOpen
• OnSave
• OnClose
• OnSheetActivate
• OnSheetDeactivate
• OnSecond
• OnTenSecond
• OnMinute
• OnTenMinute
• OnResized
• OnMessage
• OnSheetReplace[x]

This event action saves the document every ten minutes.

OnTenMinute=Save()

This event action presents a dialog showing 1 to 15 based on the active sheet.

OnSheetActivate=SymbolValue(S,SheetID)|MsgBox(S)

This event can be triggered when a specific sheet is activated as illustrated here for sheet ID 3.

OnSheetActivate[3]=MsgBox(Sheet 3 Activated)

Likewise, the event can be triggered when a specific sheet is deactivated as illustrated here.

OnSheetDeactivate[3]=MsgBox(Sheet 3 Deactivated)

This event action overrides the default Print dialog. If your script includes an
OnPrint event, then when the user chooses the Print command on a desktop
computer your script is called instead.

OnPrint=Sub$MyPrint

Chapter 3: Program ExcelRT

3-16

When the user clicks, double-click or modifies a cell value, a script can run. Notice
these events include the SheetID, Column and Row number in the event name.
None of these can be variables.

• OnCellClick[SheetID,Column,Row]
• OnCellDoubleClick[SheetID,Column,Row]
• OnCellChanged[SheetID,Column,Row]

This script says Hello when user clicks on cell B4 on first sheet.

OnCellClick[1,2,4]=Speak(Hello)

This event polls active HTML controls each second for an array of data to be copied.
If an ExcelRTcopy element is found in the active HTML content that provides array
data, this event is triggered. The event supports multiple active HTML controls per
sheet and multiple array names per HTML control.

OnHtmlViewer[ArrayName]

This event is triggered when a named picture control is clicked. The event can run
script command that retrieve the click position within the picture using the
PictureClickX and PictureClickY symbols.

OnPictureClick(ControlName)

Regardless of where a picture is positioned within a sheet or the settings of the
horizontal or vertical scrollbars, the top left corner of the picture represents X=1 and
Y = 1, while the bottom right corner represents X=Width and Y = Height where
Width and Height are the pixel size of the picture control.

Chapter 3: Program ExcelRT

3-17

External Commands
An external application can send commands to ExcelRT using the clipboard or a
command file. The external application has full access to the Scripting engine built
into an ExcelRT workbook. To enable this feature, set the Enable External
Commands checkbox in the Button Actions dialog, then click OK.

After converting a document with ConvertExcelRT, this feature is not set. You need
to enable it before distributing the document. When disabled, commands are not
processed. When enabled, ExcelRT will poll once a second for commands to
process.

Clipboard Command
Each Clipboard command consists of a request string of the form
RequestExcelRT:Command and a response string of the form
ResponseExcelRT:Data.

For a clipboard command, the external application writes the request string to the
clipboard, waits one seconds then polls the clipboard until it finds the response
string.

ExcelRT normally writes ResponseExcelRT:Done to the clipboard when finished
processing command, unless one of the processed commands uses the clipboard for
its output.

File Command
For a File command, an application writes a command to a plain text file named
ExcelRT.Request in the shared Ticket folder and reads the response from file
ExcelRT.Response. After processing a command, ExcelRT deletes file
ExcelRT.Response and writes Done to file ExcelRT.Response. After an
external application sees the response file, it should delete file ExcelRT.Response.

The same set of commands used by button actions are also supported as external
commands. The only difference is a clipboard command that writes to the clipboard
does not get a ResponseExcelRT.Done string in the clipboard since the clipboard
contains the data the application is requesting.

To demonstrate, enable External Commands in ExcelRT from the Button Actions
dialog and copy the line of text below into the clipboard.

RequestExcelRT:ExportDataToClipboard(A2:B3,Comma,LF,NQ)

Chapter 3: Program ExcelRT

3-18

The command has been processed. Now paste the clipboard into a text editor and
you’ll see data something like this coming from cells A2 to B3 in the active sheet of
ExcelRT:

13,91
25,19

Be careful on Mac when using using TextEdit to test clipboard or file commands that
include double quotes. By default, TextEdit replaces them with smart quotes. These
are not the same as double quotes. Turn off Smart quotes by clearing the checkbox
in the Preferences dialog for TextEdit.

Create a Script
The Button Actions command on the File menu presents the Button Actions dialog.
This dialog shows all the scripts used by the workbook.

A script is a string of text commands that run when a button is clicked or some type
of event occurs. Each command consists of the command name followed by open
and close parens that may contain one or more comma separated parameters without
any extra spaces.

To locate a command in your
Script starting from the cursor
location, type a string into the
edit field at the bottom left
and click the Find button.

The Help button presents a
dialog to locate, review or
insert a command template at
the cursor location.

Chapter 3: Program ExcelRT

3-19

Variables
The Variables command on the File menu presents the Variables dialog. The dialog
shows the name and value of each variable currently defined by scripts that have run.

Variable Names and Values

While your script is running, local variables are stored in memory. If your document
is saved, variables can optionally be stored in the document and later recovered
when you open the document. If you no longer need defined variables, call the
ClearVars() command in a script.

Pictures and array data are never saved with your document. The Show Pictures
popup is only visible if a script command has loaded a picture. It allows the
developer to select and display a picture. The Show Array popup is only visible if a
script has defined one or more arrays. It allows the developer to select an array and
display the value of its elements.

The CSV button presents the CSV Viewer dialog to display the contents of the CSV
memory structure used by scripting commands. Use the popup next to the CSV
button to display a specific CSV structure.

Chapter 3: Program ExcelRT

3-20

Text Editor
The Text button in the Variables window presents a plain text editor that is typically
used to create, view or edit text files in the Plugins folder. For example, this can be
used to view the contents of a CSV file or edit an HTML files used to build an
ExcelRT Plugin.

This text editor can be presented from a script on desktop computers using the
PluginTextEditor command. This editor can also be presented within ExcelRT
Builder by holding down the Shift key while clicking on the Script Edit tool.

Script Line Continuation
A script often has multiple commands, each separated with a | character.

Button 1=DefineVar(Msg,Hello)|MsgBox(Msg)

The editor limits the length of a line, but you can continue the script on the next line
with the continuation characters … as shown here. Be careful not to add any
character such as a space after the … characters.

Button 1=DefineVar(Msg,Hello)|MsgBox(Msg)|…
MsgBox(Another Message)

Chapter 3: Program ExcelRT

3-21

Test a Script
ExcelRT makes it easy to test a script in design mode using the Run Script
command on the File menu. This eliminates the need to add a button on the
workbook to test your script.

To demonstrate, present the Button Actions dialog and enter this script:

MyButton=MsgBox(Hello)

Present the Run Script dialog and enter the button name you used, in this case
MyButton. Click OK to run the script.

Run a Script

Custom Commands
A custom command can be created with calling parameters. The custom command
can then be used throughout the script just like any standard command.

Define=CommandName(V1=In,V2=InVar,V3=OutVar,V4=InOutVar,V5=Var)Script

A custom command is given a unique name and can have any number of comma
separated parameters enclosed with parenthesis followed by one or more scripting
commands separated by |.

For example, the first line below defines a command and the second line calls that
command when a button named TestBtn is clicked. Notice how the First and Last
parameters are literal input value and the Full parameter is the name of an output
variable. Also notice how the name of the calling variable FirstLast can be different
then the name defined in the parameter list or used within the script that implements
that command.

Define=FullName(First=In,Last=In,Full=InOutVar)Concat(Full,First,Last)
TestBtn=FullName(John,Doe,FirstLast)|MsgBox(FirstLast)

Chapter 3: Program ExcelRT

3-22

Each parameter is assigned a type that tells ExcelRT whether to treat it as a literal, a
variable and whether parameters are local in scope to that command only.

When defining a command, each parameter is assigned one of these types:

• In – Literal stored in a local variable
• InVar – Literal or named variable stored in a local variable
• OutVar – Local variable initialized to empty and returned in a named

variable
• InOutVar – Literal or named variable that is copied into a local variable

and then returned in a named variable
• Var – Normal variable that is never copied into a local variable

Local variables created from command parameters are given a temporary, but unique
name while the command is running and purged from the variable list when the
command is completed. A developer does not need to think about this when calling
a command, but it can be helpful to understand the process when implementing or
debugging a custom command.

To understand local variables, add a Debug() command to the command script:

Define=FullName(First=In,Last=In,Full=InOutVar)Concat(Full,First,Last)|Debug()

Chapter 3: Program ExcelRT

3-23

Notice the variable parameter named First is changed to a name of the form
FullName_1_First that is displayed in the presented Variables window. This temporary
variable renaming also occurs within the command script itself. If you could view
that script while it is running, it would actually look like this:

Concat(FullName_1_Full,FullName_1_First,FullName_1_Last)|Debug()

Once the command completes, variables FullName_1_Full, FullName_1_First,
FullName_1_Last no longer exist.

ExcelRT uses a specific naming convention for local variables. When naming
variables, a developer should never use this convention.

CommandName + “_” + Integer + “_” + ParameterName

The benefit of local variables within a command implementation is that these
variable names are unique and will not conflict with other variables in the calling
script.

There are some side effects of using local variables. If the command script calls a
Sub, local variables are not passed to that Sub. When command MyMsgBox(Hello) is
called, an empty dialog is presented.

Define=MyMsgBox(Msg=In)Sub$MyMsg
Sub$MyMsg=MsgBox(Msg)

Assume that the Msg parameter is changed to type Var.

Define=MyMsgBox(Msg=Var)Sub$MyMsg
Sub$MyMsg=MsgBox(Msg)

When MyMsgBox is called as illustrated below, the dialog now says “Hello”.

TestBtn=DefineVar(Msg,Hello)|MyMsgBox(Msg)

Here is another solution, where one command calls another command and passes in
the data. Now the command MyMsgBox(Hello) works.

Define=MyMsgBox(Msg=In)MyCmd(Msg)
Define=MyCmd(Msg=In)MsgBox(Msg)

Chapter 3: Program ExcelRT

3-24

Using a Command as a Parameter
ExcelRT supports many conditional or looping commands that call other Subs.

IfDoEvent, IfEvent, While, WhileFields, WhileArray,
SelectEvent, LessEqualGreater, LessRangeGreater

Here is a typical example.

TestBtn=IfDoEvent(Var1,=,5,Sub$IsFive,Sub$NotFive)
Sub$IsFive=MsgBox(“Is Five”)
Sub$NotFive=MsgBox(“Not Five”)

The name of the Sub referenced from a conditional or looping command can be
replaced with a command as illustrated here.

TestBtn=IfDoEvent(Var1,=,5,MsgBox(“Is Five”),MsgBox(“Not Five”))

This example presents a message dialog if Var1 contains TRUE.

TestBtn=IfEvent(Var1,MsgBox(TRUE))

This example presents three dialogs showing “1”, “2” and “3”.

TestBtn=While(1,3,MsgBox(ID),ID)

This example presents three dialogs showing “A”, “B” and “C”.

TestBtn=WhileFields(A#B#C,#,Field,MsgBox(Field))

This example presents three dialogs showing “A”, “B” and “C” where Item is a
variable holding an element of an array.

TestBtn=ArrayFromList(Array1,A?B?C,?)|WhileArray(Array1,ID,Item,MsgBox(Item))

Chapter 3: Program ExcelRT

3-25

Importing a Script
An ExcelRT file contains a main script that can import any number of other script
files. The main script is shown in the Main panel of the Button Actions dialog.

This command allows an external Script file to be imported into the Main script file.

ImportScript(ScriptName)

Notice how an ImportScript command reads in script from a file named
Script1.script that is stored in the Plugins folder.

Additional Script files can be created or opened in the Button Actions dialog by
clicking on the Open popup menu. Script files are opened readonly by default, but
you can set the Edit checkbox to make them editable.

Notice how Script1.script defines a custom command named SayMyName that is
called from the Main script.

When the OK button is clicked in the Button Actions dialog, the Main script is saved
to the Plugins folder and all other script files with the Edit checkbox set are also
saved. The script from the main and all imported scripts is stored within the
ExcelRT file. When you create an ERT, all script code is stored, compressed and
encrypted within the ERT file.

Chapter 3: Program ExcelRT

3-26

Chapter 3: Program ExcelRT

3-27

Custom Functions
Cells in ExcelRT support formulas with hundreds of standard functions similar to
those found in Microsoft Excel. A custom function can be created with script
commands and then used in formulas just like a standard function.

Custom functions are generally not called from other scripts unless they are called
using the Calculate command. Creating a custom formula is an advanced topic best
left to an experienced ExcelRT developer. A mistake in the function script may
cause formula calculations to fail, ExcelRT to hang or crash.

When implementing a custom function, never use a script command that presents a
user interface control since that blocks the calculation engine from completing.
When implementing a function, avoid using any script command that might
introduce a delay such as reading data from the Internet.

Function=FunctionName(Parm1,Parm2,…)Script

The named function is implemented with one or more script commands including an
assignment of the result to the function name. Assume cell A1 contains the value 5
and cell A2 contains the formula =AddOne(A1). The calculated result of 6 is stored
in cell A2.

Function AddOne(Value)Math(Value,+,1,AddOne)

Here is how this custom function works. The value in cell A1 is passed into the
function in a local variable named Value. Using the Math command, that value is
added to 1 and the result is stored in AddOne. Notice that every function
automatically has a result variable that is the same as the function name.

This example creates the custom function named Discount that has two parameters,
Quantity and Price. The calculated discount is 10% of the total for orders of
quantity 10 or more.

Function=Discount(Quantity,Price)Math(Quantity,*,Price,Discount)|Math(Discount,*,0.1,Disc
ount)|IfSetVar(Quantity,<,10,Discount,Number,0.00)

All function parameters are treated as local variables similar to how local variables are handled
within the implementation of a custom command. While the function is running, the local
variables are visible from the Variables windows, but discarded when the function completes.

Function parameters can accept a literal value or a cell reference just like other standard
functions in a cell formula.

A custom command can use the Python or PythonServer command. That means the full Python
programming language can now be used to add new functions to workbook formulas.

Chapter

4

Script Commands

ExcelRT support hundreds of commands to interact with the user, workbook data, the Internet and
physical devices like printers. Most commands are available to all ExcelRT workbooks. Some
commands like those described in the Vendor Commands section of the Program ExcelRT chapter
require additional software to be installed on the Vendor website.

Excel Software develops custom ExcelRT commands for specific industries or applications. Contact
Excel Software for information.

Cell Data Import and Export
Here are some of the supported button commands to import and export cell data. Do not add white
space like tabs or spaces before or after any parameter.

ImportDataFromClipboard(Range,ColDelimiter,RowDelimiter,AddQuotes)

ImportDataFromMacFile(Range,ColDelimiter,RowDelimiter,AddQuotes,Path)

ImportDataFromWinFile(Range,ColDelimiter,RowDelimiter,AddQuotes,Path)

ImportDataFromLinuxFile(Range,ColDelimiter,RowDelimiter,AddQuotes,Path)

ImportDataFromTicketFolder(Range,ColDelimiter,RowDelimiter,AddQuotes,FileName)

ImportDataFromURL(Range,ColDelimiter,RowDelimiter,AddQuotes,URL)

ImportDataFromPlugin(Range,ColDelimiter,RowDelimiter,AddQuotes,FileName)

ExportDataToClipboard(Range,ColDelimiter,RowDelimiter,AddQuotes)

ExportDataToMacFile(Range,ColDelimiter,RowDelimiter,AddQuotes,Path)

Chapter 4: Script Commands

4-1
ExportDataToWinFile(Range,ColDelimiter,RowDelimiter,AddQuotes,Path)

ExportDataToLinuxFile(Range,ColDelimiter,RowDelimiter,AddQuotes,Path)

ExportDataToTicketFolder(Range,ColDelimiter,RowDelimiter,AddQuotes,FileName)

ExportDataToPlugin(Range,ColDelimiter,RowDelimiter,AddQuotes,FileName)

Here are the valid parameter values. When supplying your own special characters for a column or
row delimiter, be careful not to use characters like (, ,,) or | which might otherwise conflict with the
syntax used by commands. For example, you could use # or & but not |.

o Range is a cell range like A1:C3 for the current sheet containing the button. To
reference a different sheet, include a sheet reference like Sheet3!A1:C3 to specify
cells on a specific sheet.

o ColDelimiter can be COMMA, TAB or SEMICOLON or special characters.

o RowDelimiter can be LF, CR or CRLF or special characters.

o AddQuotes can be DQ for double quotes, SQ for single quotes, NQ for no quotes or

special characters.

The Plugins folder is commonly used to share data to and from other applications, a human or a
website. Use command ImportDataFromPlugin or ExportDataToPlugin to read or write
data to a named file in the Plugins folder.

Chapter 4: Script Commands

4-2

Platform Specific
ExcelRT will only execute some commands when running on a specific OS, otherwise the command
is ignored.

Command ImportDataFromMacFile and ExportDataToMacFile will only execute on a
Mac computer. Likewise, command ExportDataToWinFile will only execute on a Windows
computer since those command have OS specific file paths. Command
ExportDataToLinuxFile will only execute on a Linux computer.

This command is only applicable to iOS and ignored on desktop platforms.

ShareTextFile(FileName)

It presents the sharing panel and allows text from the FileName referenced in the Plugins folder to be
shared with other applications. It allows the user to create a CSV text file held within the iOS Files
app. The user could email that CSV file to another computer so data could be presented within
Microsoft Excel.

These commands are only available on desktop platforms and ignored on iOS. A dialog is presented
to pick the font, text color or background color of the specified cell. The SheetID, Col and Row
parameters are integers or variables containing an integer value. The first sheet is SheetID 1.

• CellFontPick(SheetID,Col,Row)
• CellTextColorPick(SheetID,Col,Row)
• CellBackColorPick(SheetID,Col,Row)

Chapter 4: Script Commands

4-3

Shared Ticket Folder
The Plugins folder is generally used to exchange data files with other applications. If ExcelRT is
installed independent of your application, it may not be installed in the default location. If an external
application needs to exchange data with ExcelRT using a known fixed file location, the shared Ticket
folder can be used.

If you use QuickLicense to protect and license your ExcelRT file, you’ll be familiar with the shared
Ticket folder that holds your active license information. Since all user accounts have full read/write
access to this folder. The shared ticket folder is at the same file path on all Mac OS computers,
Windows 7 thru 10 computers or Linux computers. It can be a convenient place to read and write
data.

Command ImportDataFromTicketFolder or ExportDataToTicketFolder can read
or write data to a named file in the Ticket folder.

• On Windows: c:\users\public\ticket
• On MacOS: /users/shared/ticket
• On Linux: /var/ticket

To demonstrate an export command, consider the cell range A1:G4 on sheet Four displayed in
ExcelRT. Assign an export command to Button 1.

Button 1=ExportDataToTicketFolder(Four!A1:G4,COMMA,LF,DQ,"Export.csv")

Export Cell Date to a Text File

Click Button 1, then locate file Export.csv created in the Ticket folder. Open that file into a plain
text editor and it looks something like this.

Text File of Cell Data

The .csv file extension (comma separated values) is likely mapped to Microsoft Excel. If you double-
click that file, it opens Excel and displays the data.

Chapter 4: Script Commands

4-4

Data Exported from ExcelRT to Microsoft Excel

Chapter 4: Script Commands

4-5

Custom Images
To replace a picture in the ExcelRT workbook, identify the sheet title and picture name, then add a
command that gets executed by an OnOpen event or button click.

ReplacePictureFromPlugin(SheetName,PictureName,FileName)

Assume that Logo.jpg is stored in the Plugins folder and you want to replace Picture 1 on
Sheet3 when the workbook opens. See the event actions section below.

OnOpen=ReplacePictureFromPlugin("Sheet3","Picture 1","Logo.jpg")

To ensure the picture is replaced with a new picture of the same size and position, the replacement
picture on disk can be a PNG or JPG image. The picture dimensions on disk must be a specific size
based on the original picture pasted into the workbook assuming it has not be scaled within the
workbook.

Assume the original picture pasted into the Excel workbook was 470 x 227 pixels. The replacement
picture must be 313 x 151 pixels. Multiple the Width and Height by 0.666 to determine the new
required Width and Height.

The calculation accounts for the conversion dpi from Excel, the native 96 dpi for Windows and 72 dpi
for Mac and the HiDpi display handling within ExcelRT where this calculation is used X / 2 * 96 / 72.

This command prompts the user for a file and copies it to the Plugins folder with a specified
FileName. Apply a company logo to sheets when combined with the
ReplacePictureFromPlugin command. If the Message is not "", it presents a Yes/No dialog
to the user giving them the ability to cancel.

PluginFileFromUserPrompt(Message,FileName)

Chapter 4: Script Commands

4-6

Internet Data
This command retrieves a file from the Internet and writes it to the Plugins folder with the specified
FileName.

PluginFileFromURL(FileName,URL)

To present a URL in the default web browser, use ShowURL(URL) as illustrated below.

ShowURL("http://www.excelsoftware.com")

This command is similar except it presents the URL in a Window owned by the ExcelRT application
that can be given a Title. The optional Size and Position parameters allow control over the original
size and position of that window.

ShowURLWindow(Title,URL,Size*,Position*,BrowserID*)

The Size parameter can be empty, Maximize, Content or WxH where W is a pixel width and H
is a pixel height. If Size parameter is Content, the dialog is 75% of the Window size. The Position
parameter can be empty, TopLeft, Center, TxL or RelativeTxL where T represents Top
position in pixels and L represents Left position in pixels. If you supply a Position parameter you must
at least include an empty Size parameter.

The RelativeTxL is a relative top and left position from the top left corner of the ExcelRT window
itself rather than the top left corner of the screen. Here is a valid example where the presented
Browser window is offset down 100 and left 200 pixels from the top left corner of the ExcelRT window.

Relative100x200

The optional BrowserID field returns a named reference to the presented window that can be used to
close or interact with controls.

This command closes the window with the assigned BrowserID.

URLWindowClose(BrowserID)

This command refreshes the web page displayed in the window with the assigned BrowserID.

URLWindowRefresh(BrowserID)

This command brings the window with the assigned BrowserID to the front.

URLWindowFront(BrowserID)

This command clicks a control in the Window with the assigned BrowserID. RefType is id, name,
class or tag. Occurrence is an integer starting from 1. The Occurrence parameter is required, but
ignored for RefType of id.

URLWindowClick(BrowserID,RefType,Occurrence,ID)

Chapter 4: Script Commands

4-7

This command writes text to a control in the window with the assigned BrowserID.

URLWindowWrite(BrowserID,RefType,Occurrence,ID,Text)

This command copies text from a control in the window with the assigned BrowserID.

URLWindowCopy(BrowserID,RefType,Occurrence,ID)

This command pastes text to a control in the window with the assigned BrowserID.

URLWindowPaste(BrowserID,RefType,Occurrence,ID)

This command presents an ExcelRT window to display HTML formatted text. It could be used to
display an HTML formatted report constructed by the script without retrieving a URL from the Internet.
Title is a variable or literal string containing a title for the window or view. Source contains the HTML
formatted text.

ShowHTML(Title,Source,Reference,Size,Position)

The Reference parameter can usually be left empty. On desktop platforms if your HTML source
contains references to image files included in the Plugins folder, then Reference is the name of any
file in the Plugins folder.

Reference can also be a full platform specific file path to a file on disk. All referenced files are
assumed to be in the folder holding that file. This approach is not recommended since your
application would be platform specific.

The Size and Position parameters are optional and work just like those in the ShowURLWindow
described above.

Use this command to retrieve data from a web page. URL is a variable or literal string containing the
URL of the web page. Result is a variable where the retrieved data is stored.

HttpGet(URL,Result)

Use this command to post data to a web page. URL is a variable or literal string containing the URL
of the web page. PostData is a variable or literal string containing field and value pairs to be posted
to that page. Result is a variable where the retrieved data is stored.

HttpPost(URL,PostData,Result)

Here is an example that posts John and Doe to parameters named first and last.

HttpPost(http://domain.com/test.php,first=John&last=Doe,Response)

Chapter 4: Script Commands

4-8

Dialog with Button Actions
To show a message dialog with buttons and then perform different actions based on which button is
clicked, use the Message command. All parameters are strings, where Message is the displayed
text, Explanation is additional text, Btn1Name is the default button name, Btn2Name is an
optional button name or "" and Btn3Name is another optional button name.

To perform an action if Btn1Name is clicked, then name Btn1Event and add an event line to the
Button Actions dialog, otherwise use "".

The Icon parameter determines what platform specific icon is displayed in the dialog. Use None,
Note, Caution, Stop or Question.

Message(Message,Explanation,Btn1Name,Btn2Name,Btn3Name,Btn1Event,Btn2Event,Btn
3Event,Icon)

As an example, these commands defined in the Button Actions dialog determine what happens when
a button named Button 1 is clicked.

Button 1=Message(Make a choice?,,Choice 1,Choice
2,,Choice1Event,Choice2Event,,Question)

Choice1Event=MsgBox(You selected Choice 1)

Choice2Event=MsgBox(You selected Choice 2)

Here are the commands defined in the Button Actions dialog.

Present Message Dialog and Specify Button Actions

Here is the dialog presented when the user clicks Button 1.

Choice Dialog Presented to User

External Applications
The folder holding the ExcelRT application contains a Plugins folder. In Design mode, the Plugins
folder holds a text file containing button actions. It can also hold support applications used by
ExcelRT in Design or User mode.

Chapter 4: Script Commands

4-9

To run an application that resides in the Plugins folder, use a platform specific command that is
ignored by ExcelRT when running on a different platform.

RunMacAppFromPlugin("AppName.app")
RunWinAppFromPlugin("AppName.exe")
RunLinuxAppFromPlugin("AppName")

The Plugins folder includes a simple test application Hello.app or Hello.exe. To try this
feature, assign this command to a button and click it.

To run an application that resides at a specified file path, use these commands.

RunMacAppFromPath(Path)
RunWinAppFromPath(Path)
RunLinuxAppFromPath(Path)

Clipboard and File Data
To write a Data string to the clipboard, use ToClipboard(Data). To read clipboard text and
store it in a specified cell, use FromClipboard(A3). These commands can also use variables
as described in a later section of this chapter.

To write text to a file, use ToMacFile(Path,Data), ToWinFile(Path,Data),
ToLinuxFile(Path,Data) or ToTicketFolder(FileName,Data).

A button can run multiple commands separated by the | character. Assume you want to pass 2
parameters to an application through the clipboard and then launch an application that can read and
use those parameters. Here is an example that uses an application to look up an account balance for
John Doe and do something with it.

ToClipboard("John Doe")|RunMacAppFromPlugin("AccountBalance.app")

Prompt for Data Entry
A button click can present a Data Form dialog to the user to enter data into a sheet. Use
DataForm(ColRange,RowCount,DialogLabel) where ColRange references a cell
range that contains field labels, RowCount determines the maximum number of rows and
DialogLabel is a text string that names the dialog.

Chapter 4: Script Commands

4-10

Assume these cells have label names A1="First Name", B1="Last Name", C1="Company",
D1="Street", E1="City", F1="State", G1="Zip". Here is an example of the DataForm
command.

DataForm(A1:G1,9,"Company Contact")

Data Form Dialog for Entering Cell Values

Refer to the ExcelRT window image above where row 1 contains the title of each column of data. If
Button 1 is assigned to the DataForm command described above, the Data Form dialog is presented
when clicked.

The ColRange parameter in the DataForm command defines the label for each column of data in
one row of the table. The first record of data starts in row 2 and a total of 9 rows of data can be
created with the Data Form dialog. Notice the 1st of 3 currently defined records is displayed in the
dialog. Data is read from the sheet when the dialog is presented and saved to the sheet when the
user clicks OK.

To prompt for one or more values and store the data in designated cells, use
PromptForValue("DialogLabel","Label1",CellRef1, "Label2",CellRef2,
…). Here is an example.

PromptForValue("Enter Your Name","First Name",A1, "Last Name",A2)

This command can include any number of label and cell reference pairs. It presents a simplified
version of the Data Form dialog that allows user editing of any arbitrary set of cells.

Chapter 4: Script Commands

4-11

Variables
An ExcelRT file can hold a list of named variables. A variable is usually created with a script
command. Local variables are only retained when closing the ExcelRT file by using the
StoreLocalVars command discussed below.

Assume that you want to prompt the user for text such as a Company name that will be displayed on
each sheet of the ExcelRT file. These commands will collect text from the user, assign that text to a
variable named Company and display it in cell A1 of the current sheet.

PromptUserForVar("Enter Company Name",Company)
VarToCell(Company,A1)

The VarToCell command puts the value of the named variable into a cell specified with a cell
reference. To put a value into a range of cells, use this command.

VarToCellRange(VarName,Range)

The VarName parameter can be a named variable or just data as illustrated in this example that
stores the value 0 into 6 cells on MySheet.

 VarToCellRange(0,MySheet!A1:C2)

To get text from a cell and store it as a named variable, use this command.

VarFromCell(Company,A1)

Sometimes when retrieving a value from a cell, you need to use a marker other than an empty string
to indicate the empty cell value. This command returns the value EmptyData when the cell value is
empty. The VarToCell command will automatically replace the value EmptyData with an empty string.

VarFromCellWithEmpty(Company,A1)

The DefineVar command will define a new variable and give it a default value. This command can
also be used to change the value of an existing named variable.

DefineVar(VarName,Value)

A variable name may contain letters A..Z, a..z and 0..9. Other characters should not be used in a
variable name. Normal variables are stored in memory and discarded when the ExcelRT file is
closed.

To create a global variable that is available to all ExcelRT files, even those created by other products
or vendors, start the variable name with $. Here is an example of a local and global variable name.

DefineVar(Test,Local Data)
DefineVar($Test,Global Data)

This command defines a new variable and gives it a literal value. Unlike DefineVar, it does not treat
the Value parameter as a potential variable name.

DefineVarLiteral(VarName,Value)

Chapter 4: Script Commands

4-12

This command puts the value of the named variable into a cell specified by SheetID, Col and Row.

VarToSheetColRow(VarName,SheetID,Col,Row)

This command sets the value of the named variable from a cell specified by SheetID, Col and Row.

VarFromSheetColRow(VarName,SheetID,Col,Row)

Global variable names and values are retained when you close and reopen the ExcelRT file. Global
variables can even be used to exchange data between different ExcelRT files.

To define a variable based on the value in another variable use the DefineVarForValue command.
VarName is the variable that you will assign a value to. Test is the name of a test variable. If the
Test variable contains Value1 then put Name1 in VarName. If the Test variable contains Value2 then
put Name2 in VarName.

This command can include as many Value/Name pairs as desired.

DefineVarForValue(VarName,Test,Value1,Name1,Value2,Name2,Value3,Name3,…)

Here is an example that assigns the string Female or Male to the Gender variable based on the state
of the IsMale variable.

DefineVarForValue (Gender,IsMale,FALSE,Female,TRUE,Male)

To clear all variable names and values, use this command:

ClearVars()

Unlike DefineVar, the CreateVar command will only create a named variable with an empty
value if it does not already exist. If the variable exists, nothing happens.

CreateVar(VarName)

This command returns the value of a variable whose name is stored in a variable. Assume Var1
contains the value Var2 and Var2 contains the value Test. This command stores the value Test in a
variable named Result.

ValueOfVarRef(Var1,Result)

This command copies the value from one named variable to another.

CopyVar(FromVar,ToVar)

Local variable names and values are not saved and restored with an ExcelRT file by default. To force
ExcelRT to save local variables so they exist when the file is later reopened, use this command.
Carefully read the details below when using this command.

StoreLocalVars()

When using the StoreLocalVars() command, you will likely want to call it from a script that runs during
the OnOpen event, otherwise if the user simple opens and saves the file, the variables are now lost.

Chapter 4: Script Commands

4-13

Use of the StoreLocalVars command presents the risk of corrupting your ExcelRT file depending on
the values stored in variables. An ExcelRT XML file is stored as an ASCII XML formatted text file. An
ERT file is just a compressed, encrypted copy of that XML file.

There are scripting commands that allow a developer to store non-ASCII text, prompt the user for text
or even store XML tag names in string variables. These actions could damage the structure of the
XML file so it cannot be reopened.

A developer can add variables from the Variables dialog presented by clicking the Variables tool in
ExcelRT Builder. The Variables dialog shows local variable names and values when debugging a
script. Global variables discussed below are not displayed in the Variables dialog. This feature could
be used to predefine variable values for a specific customer.

Prompt User
Several commands are available to prompt the user for data entry or selections.

A user typically clicks a button on a sheet to enter a variable value into a presented dialog.

This command presents a dialog prompting the user to enter data that is stored in a variable.

PromptUserForVar(Message,VarName)

This command will prompt the user to make a selection from a list of choices, then return a value into
a variable based on that choice.

PromptUserForSelection(Description,C1;C2;C3,V1;V2;V3;VarName)

The command has four comma-separated parameters, a
description, a choice list, a value list and a variable
name.

Use semicolons to separate items in the choice and
value list. This example asks the user to select a color.

The PromptCheckboxList command presents a
checkbox list in a resizeable dialog. List is a variable
that holds a semicolon-separate list of items.

Name the dialog the dialog with the Title parameter and
give it a one-line description with the Description
parameter.

The user can scroll through the list of checkbox, resize
the dialog or check multiple items. SelectionVar is a
variable that holds a user selected semi-colon separated
list of indexes.

PromptCheckboxList(Title,Description,List,SelectionVar)

For ExcelRT Cloud, list items are not shown with a checkbox. The user can hold down the command
key while clicking to select one or more non-contiguous items.

Chapter 4: Script Commands

4-14

Cell References
Sometimes it is useful to construct, deconstruct or offset a cell reference to a sheet of the workbook
from other scripting commands that use variables. Consider the cell reference One!B3. It references
the cell in column B of row 3 on a sheet titled One.

This command creates a cell reference stored in a variable named CellRef from the Sheet ID, Column
number and Row number. The SheetID, Col and Row parameters are integers or variables with an
integer value. For example, if the first sheet is titled Data and SheetID is 1, Col is 3, Row is 4, then
the CellRef variable will contain Data!C4. FromCol and FromRow are optional parameters that allow
you to construct a range in the returned CellRef parameter.

ToCellRef(SheetID,Col,Row,CellRef,FromCol*,FromRow*)

This command returns the Sheet ID, Column number and Row number from a cell reference. The
parameter CellRef can be a literal string or variable name holding the cell reference. For example, if
the title of the second sheet is Options and CellRef contains Options!D7, this command will return
SheetID 2, Col 4 and Row 7.

FromCellRef(SheetID,Col,Row,CellRef)

This command applies a Sheet, Col or Row offset to the cell reference in the named CellRef variable.
For example, if the cell reference is One!B5 and Sheet is 0, Col is 0 and Row is 1, then the cell
reference is changed to One!B6. Exceeding the Sheet, Col or Row boundaries will cause an
exception.

OffsetCellRef(Sheet,Col,Row,CellRef)

This command is given a list of cell references and returns the first empty cell reference into the
Result variable.

FindFirstEmptyCell(CellRef1,CellRef2,CellRef3,…,Result)

Assume that you want to collect 20 sets of similar data from a user. A custom dialog presented with a
button click collects all the data for one set of cells. The FindFirstEmptyCell command can locate the
first empty set of data into which the dialog results are stored.

Chapter 4: Script Commands

4-15

Math
Use the Math command to perform basic math between two Operands and stores the output in a
Result variable. Operand1 and Operand2 can be a literal value or variable name. The Operator
parameter can be +, -, / or *.

Math(Operand1,Operator,Operand1,Result)

Use this command to access the calculation engine built into ExcelRT from the scripting language.
The Formula parameter is a formula from a variable or literal string. The same syntax is supported as
that used in any cell within the workbook without the leading = character. The calculated result is
stored in the Result parameter.

Calculate(Formula,Result)

Here is an example of the Calculate command. If the formula includes any commas you will need
double quotes around it when entering it as a literal string.

Calculate(“1+Sin(A4)”,MyAnswer)

This command returns a random integer value between the From and To value.

Random(From,To,Result)

Lists
These commands can manipulate a list of values. Source is a delimiter-separated list of string
values or named variable containing such a list. Delimiter can be the actual delimiter or named
variable that contains the delimiter character. Index is an integer value or named variable that
contains an integer.

The output of the command is stored in the named variable identified by the Result parameter. The
SetNthField command changes the value of the Source variable.

NthField(Source,Delimiter,Index,Result)
CountFields(Source,Delimiter,Result)
FindField(Source,Delimiter,Find,Result)
SetNthField(Source,Delimiter,Index,NewValue)
DefineFields(Source,Delimiter,Default,Count)
AddField(Source,Delimiter,NewValue)
DeleteNthField(Source,Delimiter,Index)
SortFields(Source,Delimiter,CaseSensitive)
ReverseFields(Source,Delimiter)
WhileFields(Source,Delimiter,FieldVar,Sub)

These commands define a variable named Var1 containing three semicolon-separated strings, then
retrieves the second string into Var2 and present it in a dialog.

DefineVar(Var1,One;Two;Three)|NthField(Var1,;,2,Var2)|MsgBox(Var2)

These commands count the strings in Var1 and display the count in a dialog.

CountFields(Var1,;,Var2)|MsgBox(Var2)

Chapter 4: Script Commands

4-16

These commands find and display the index of a string Three.

FindField(Var1,;,Three,Var2)|MsgBox(Var2)

This command changes the value of the second string and displays the list.

SetNthField(Var1,;,2,Hello)|MsgBox(Var1)

The DefineFields command creates a delimited list with Count elements each containing the
Default string. The Source parameter is a named variable, while other parameters can be a literal
string or named variable.

DefineFields(MyArray,;,0,10)

A delimited list can be used like an array where NthField is used to get an array value and
SetNthField is used to set an array value.

The AddField command adds a new field to the end of the list. The Source parameter is a named
variable. The Delimiter and NewValue parameters can be a named variable or literal string.

AddField(Source,Delimiter,NewValue)

Use AddUniqueField to add NewValue if it doesn’t already exist in the Source.

AddUniqueField(Source,Delimiter,NewValue)

The DeleteNthField command removes the item at the specified Index. The first item is at
index 1.

DeleteNthField(Source,Delimiter,Index)

The SortFields command will alphabetically sort the strings in the item. The CaseSensitive parameter
should be TRUE or FALSE.

SortFields(Source,Delimiter,CaseSensitive)

This command reverses the order of delimited strings stored in the Source variable:

 ReverseFields(Source,Delimiter)

Use this command to create a delimited list of strings from values in a range of cells.

FieldsFromCellRange(Source,Delimiter,Range)

Use this command to store a delimited list of strings into a range of cells.

FieldsToCellRange(Source,Delimiter,Range)

A list of semicolon-separated strings can be retrieved from a range of cells and then presented to the
user with the PromptUserForSelection or Dialog commands.

Use this command to loop through the field list. For each loop iteration, the value of the field is stored
FieldVar and the named Subroutine is called.

WhileFields(Source,Delimiter,FieldVar,Sub)

Chapter 4: Script Commands

4-17

Email Read
This command allows a workbook to receive information from a specific email address by requesting
the email message directly from an email server.

EmailRead(Host,Port,User,Password,Type.SLL,Format,ResultVar,ReasonVar,FromVar,To
Var,SubjectVar,MessageVar)

These are input parameters:

• Host is the email server (example: pop.secureserver.net)
• Port is the port number (example: 110)
• User is the username of account (example: tom@yourdomain.com)
• Password is the incoming email account password (example: test123)
• Type is FALSE for Pop2 or TRUE for IMAP
• SSL is FALSE or TRUE
• Format is ASCII, ASCII7, ASCII8, UNICODE or RAW

The return parameters are variable names:

• ResultVar is SUCCESS, ERROR or FAILED
• ReasonVar contains error description if not SUCCESS
• FromVar contains the sender email address
• ToVar contains the receiver email address
• SubjectVar contains the Subject line text
• MessageVar contains the message content based on Format paramete

External App Communication
Several commands can accept a variety of parameter types for the VarName field including a variable
name, CellRef or Data. These commands are typically used to communicate data between ExcelRT
and an external helper application.

• ToPluginFile(Filename,VarName)
• FromPluginFile(Filename,VarName)
• ToClipboard(VarName)
• FromClipboard(VarName)

For example ToPluginFile and ToClipboard writes text to a file in the Plugins folder or to the
clipboard, respectively. ExcelRT firsts checks if VarName is a defined local or shared variable, then
checks if it is a valid CellRef otherwise it is assumed to be a literal text string.

A CellRef identifies a specific cell in the local sheet like B7 or a cell on a specific sheet like
ConfigSheet!D2.

This command defines a local or shared variable. To create a shared variable, start the name with a
$ character. A variable is typically defined prior to a command that reads data into the named
variable.

• DefineVar(VarName,Data)

These helper functions are often useful when communicating with an external application. The
Sleep command waits the specified number of seconds, usually to allow a helper application to

Chapter 4: Script Commands

4-18

collect some data. The Seconds parameter can be a value from 1 to 9. The PluginFileDelete
command deletes the specified FileName in the Plugins folder.

• Sleep(Seconds)
• PluginFileDelete(FileName)
• PluginWaitForFile(FileName,TimeOut)

The PluginWaitForFile command periodically polls for the existence of the specified FileName
in the Plugins folder. It will time out if that file is not found for Timeout seconds.

Chapter 4: Script Commands

4-19

Picture and PDF Files
Use these command to present an image or PDF file stored in the Plugins folder. The Title parameter
titles the presented window. The FileName parameter is the file name without the path in the Plugins
folder. Refer to the ShowURLWindow command for details regarding the Size and Position
parameters.

• ShowPictureFromPlugin(Title,FileName,Size*,Position*)
• ShowPDFFromPlugin(Title,FileName)

On a desktop platform, the FilePath parameter specifies a platform specific full file path to the image
or PDF file that can reside anywhere on disk.

• ShowPictureFromPath(Title,FilePath,Size*,Position*)
• ShowPDFFromPath(Title,FilePath)

For compatibility with future ExcelRT Cloud, the ShowPDFFromPlugin and ShowPDFFromPath
command may include Size and Position parameters, but they are ignored in a Desktop edition of
ExcelRT.

The ShowPDFFromPlugin and ShowPDFFromPath commands can also be used to show a video or
other document type on most platforms. To use this feature, test this command with your specific
document on each ExcelRT platform that your product claims to support.

This command creates a JPG image file in the Plugins folder for the current sheet.

SheetToJPG(Filename,MaxColumn*,MaxRow*)

MaxColumn and MaxRow are optional parameters that allow you to limit the JPG size to the specified
number of columns and rows. This command creates a JPG in the Plugins folder named Image.jpg
from current sheet cells A1:D5.

SheetToJPG(Image.jpg,4,5)

This command creates a JPG image file in the Plugins folder for the named sheet.

SheetNameToJPG(SheetName,Filename,MaxColumn*,MaxRow*)

This command creates a PDF image file in the Plugins folder for the current sheet.

SheetToPDF(FileName,MaxCol*,MaxRow*)

In this example, the generated image is stored in file Sheet1.pdf and has 5 columns and 10 rows

SheetToPDF(Sheet1.pdf,5,10)

This command creates a PDF image file in the Plugins folder from a JPG file. The optional PageSize
parameter can be Letter, Legal, Tabloid, A3, A4 or Default. Default will size the PDF document to the
image size it contains.

JPGtoPDF(File.jpg,File.pdf,PageSize*,Title*,Subject*,Author*)

Chapter 4: Script Commands

4-20

The Title, Subject and Author fields are optional searchable meta data within the PDF.

JPGtoPDF(File.jpg,File.pdf

This command prints a JPG file from the Plugins folder. The Scale parameter is TRUE or FALSE.
When TRUE, the JPG file is scaled to fit the printed page.

PrintJPG(Filename,Scale)

The Filename parameter in the PrintJPG command can be a semi-colon separated list of file names
like File1.jpg;File2.jpg;File3.jpg. This may be useful on a desktop computer to print
multiple images from a generated report. Those images are combined into the same print job so by
printing to a PDF file, they get merged into a single PDF file.

Printing on iOS goes through the sharing panel that only holds one image at a time. On iOS, only the
first supplied JPG file is printed.

Subroutines
A script can define or call a subroutine. A subroutine can be used to break up a long list of
commands into smaller parts or to create a common list of commands that get called by multiple
buttons.

To demonstrate, consider this button action. When the button is clicked, three sequential dialog
boxes are presented.

Button 1=MsgBox(One)|MsgBox(Two)|MsgBox(Three)

Here is another way to accomplish the same result. It uses a subroutine named Sub$One. By
convention, each subroutine name consists of the prefix Sub$ plus a unique name.

Button 1=Sub$One|MsgBox(Three)
Sub$One=MsgBox(One)|MsgBox(Two)

Create as many subroutines as needed. A subroutine can call other subroutines as illustrated below.
When the button is clicked, five sequential dialogs are presented. Be careful not to create a circular
loop between subroutine calls.

Button 1= Sub$1|MsgBox(Five)
Sub$1=Sub$2|Sub$3
Sub$2=MsgBox(One)|MsgBox(Two)
Sub$3=MsgBox(Three)|MsgBox(Four)

Chapter 4: Script Commands

4-21

Conditionals and Loops
ExcelRT supports conditional logic. These commands set a named result variable to TRUE or
FALSE based on the values in a list of named variables.

AndSetVar(Result,Var1,Var2,…)
OrSetVar(Result,Var1,Var2,…)

This command sets a named Result variable to TRUE or FALSE based on a condition between two
operands. Operand1 and Operand2 can be a literal value, named variable or supported symbol.

IfSetVar(Operand1,Condition,Operand1,Result,CompareType*,Value*)

The Condition parameter can be =,<>,<,<=,> or >=.

Supported symbol names are shown in the Symbols section below. Most symbols are available from
an XML or ERT file at any time. Some symbols like SerialNumber are only valid under specific
conditions. For example, your Product must be activated with a Serial Number before that symbol
returns a non-empty value.

In the first example, the variable named FirstHalf is set to TRUE if the current date is in the first half of
the year and FALSE for the second half. The second line sets the variable named IsMac to TRUE if
ExcelRT is running on a Mac.

IfSetVar(Month,<=,June,FirstHalf)
IfSetVar(Target,=,Mac,IsMac)

The CompareType and Value parameters in the IfSetVar command are optional. Use Number, String
or StringCase for the CompareType parameter where Number assumes the operands are a number,
String assumes a case insensitive string comparision and StringCase is a case-sensitive comparison.
Value is a literal or variable value that is assigned to Result if the condition is TRUE.

This command sets a named variable to the value of a symbol listed above.

SymbolValue(VarName,Symbol)

This command runs a named set of commands (subroutine) based on the TRUE or FALSE result of
the condition between two operands. Each operand can be a literal value, named variable or symbol
as described above.

Chapter 4: Script Commands

4-22

CompareType can be Default, Number, String or StringCase to indicate how operators should be
treated when doing a comparison. If no CompareType parameter is included (default behavior of
ExcelRT 1.0), then Default is assumed. For Default, = and <> treats operators as String while other
conditions assume operators are Number.

IfDoEvent(Operand1,Condition,Operand1,trueEvent,falseEvent,CompareType*)

For best results, use Number, String or StringCase for the CompareType parameter where Number
assumes the operands are a number, String assumes a case insensitive string comparision and
StringCase is a case-sensitive comparison.

This command runs Sub$One if MyName is Tom, otherwise it runs Sub$Two.

IfDoEvent(MyName,=,Tom,SubOne,SubTwo)
Sub$One=MsgBox(My name is Tom)
Sub$Two=MsgBox(My name is not Tom)

This command runs the named Sub if the Operand is TRUE.

IfEvent(Operand,Sub)

The SelectEvent command is like a switch statement in that it compares the value of the TestVar with
one or more literal or variable values. If a match is found, it runs the associate subroutine. This
command can use named symbols.

SelectEvent(TestVar,Var1,Sub1,Var2,Sub2,Var3,Sub3,…)

In this example, a dialog indicates on which platform this script is running.

SelectEvent(Target,Mac,Sub$Mac,Windows,Sub$Win,iOS,Sub$iOS)
Sub$Mac=MsgBox(Mac)
Sub$Win=MsgBox(Window)
Sub$iOS=MsgBox(iOS)

The While statement creates a loop structure that can count up or down and call the referenced
subroutine. The First and Last parameters can be an integer value or named variable that contains
an integer value.

While(First,Last,Sub,IndexVar*)

This example, displays a message dialog three times.

While(1,3,Sub$One)
Sub$One=MsgBox(Loop1)

Since one subroutine can call another, you can create nested While loops as illustrated below.

While(1,3,Sub$One)
Sub$One=MsgBox(Loop1)|While(2,4,Sub$Two)
Sub$Two=MsgBox(Loop2)

The fourth optional parameter in this While loop holds an Index value presented in a MsgBox as 1, 2
and 3.

While(1,3,Sub$One,Index)
Sub$One=MsgBox(Index)

Chapter 4: Script Commands

4-23

This command calls one of three Subs based on a numeric or string comparison of two values. Type
is Number, String or StringCase for a numeric, string or case sensitive string comparison.

LessEqualGreater(TestValue,CompareValue,Type,LessSub,EqualSub,GreaterSub)

This command calls one of three Subs based on a numeric or string comparison of two values. Type
is Number, String or StringCase for a numeric, string or case sensitive string comparison. If the Value
is equal to or between the Low and High limits, then call RangeSub.

LessRangeGreater(Value,Low,High,CompareType,LessSub,RangeSub,GreaterSub)

Symbols
Supported symbol names are shown below.

Target Mac Windows Linux
IOS Android Day Month
Year Hour Minute Second
DayOfWeek DayOfYear WeekOfYear Today
Time TimeStamp Sunday Monday
Tuesday Wednesday Thursday Friday
Saturday January February March
April May June July
August September October November
December SheetID ScreenWidth ScreenHeight
Filename Device Computer Phone
Tablet MessageState BaseFileName CR
LF CRLF SelectedRow SelectedColumn
LastSelectedRow LastSelectedColumn ExcelRTVersion
PictureClickX PictureClickY Volume Comma
DoubleQuote OpenParen CloseParen PluginFolder

The Device symbol returns Computer, Phone or Tablet to allow your workbook to alter its behavior on
different devices. On iPhone, Target returns iOS and Device returns Phone. On iPad, Target returns
iOS and Device returns Tablet.

The CR, LF and CRLF symbols are used to add line endings on text.

The MessageState symbol returns TRUE or FALSE to indicate if the OnMessage event is enabled.
This symbol is only applicable for ExcelRT Vendor Commands.

These symbols are only valid for a licensed product. An empty string is returned for a simple XML or
ERT file. These symbols work with a Standalone, Shared QuickLicense or Shared Cloud License
application.

RequestNumber SerialNumber VendorID Features
ProductID CloudLicenseStatus

RequestNumber returns a 10-digit number for the activated computer or device. SerialNumber
returns the Serial Number entered by the user to activate the product. VendorID returns your 8-digit
VendorID for Safe Activation Service 3 for the activated license. ProductID returns an integer value
that represents the Product record in Safe Activation associated with QuickLicense or Cloud License.

CloudLicenseStatus indicates the status of the current license with values NOSETUP, NOTFOUND,
UNACTIVATED, ACTIVATED, EXPIRED, BLOCKED or SUSPENDED.

Chapter 4: Script Commands

4-24

Features returns a 100-character string used to enable or disable up to 100 unique features in your
product. The 0 character indicates that feature is disabled and X indicates that feature is enabled.
The CardID symbol is used to implement InApp credit card payments within an ExcelRT workbook.
The symbol is stored on the local computer or device for a specific VendorID of a Safe Activation
Service 3 account.

CardID

Credit card information is securely vaulted in the Paypal payment processor. It is not stored in the
ExcelRT file, application or computer or on the Safe Activation server.

The OnPictureClick event is triggered when a named picture control is clicked. The event can run
script commands that retrieve the click position within the picture using the PictureClickX and
PictureClickY symbols.

Regardless of where a picture is positioned within a sheet or the settings of the horizontal or vertical
scrollbars, the top left corner of the picture represents X=1 and Y = 1, while the bottom right corner
represents X=Width and Y = Height where Width and Height are the pixel size of the picture control.

Chapter 4: Script Commands

4-25

CSV Read, Write and Modify
ExcelRT provides a flexible memory structure to read and write CSV formatted data.

A CSV text file contains one or more rows of comma-separated values. A script can read a CSV file
into memory, copy individual cells from that memory structure to and from variables and write that
memory structure to a text file using the same or different dimensions, column or row separators.

 CreateCsv(Cols,Rows)
 CellRangeFromOpenCsv(Range,FromRow,FromColumn,ToRow,ToColumn)

CellRangeToOpenCsv(Range,FromRow,FromColumn,ToRow,ToColumn)
OpenCsvFromPlugin(ColDelimiter,RowDelimiter,AddQuotes,Filename,Cols,Rows)
SaveCsvToPlugin(ColDelimiter,RowDelimiter,AddQuotes,Filename,Cols,Rows,ForceQuote
s*)
VarFromOpenCsv(VarName,Row,Column)
VarFromOpenCsvNumber(VarName,Row,Column)
VarToOpenCsv(VarName,Row,Column)

Use this command to create a CSV memory structure with a specified Number of columns and rows.
Once a CSV is created, you can add space for additional rows by calling this command again with a
larger Rows parameter without destroying existing data.

CreateCsv(Cols,Rows)

Additional columns cannot be added to an existing CSV without scrambling the data. To clear the
CSV data, use this command.

CreateCsv(0,0)

Refer to section Cell Data Import and Export to understand parameters ColDelimiter, RowDelimiter
and AddQuotes. Filename refers to a CSV text file stored in the Plugins folder. The Cols and Rows
parameters in the OpenCsvFromPlugin command must exactly match the column count and row
count in the CSV formatted data file.

The Row and Column parameters refer to a specific cell in memory. The SaveCsvFromPlugin
command can save modified data in memory to the same or different Filename in the Plugins folder.
The total cell count based on the Cols and Rows parameters must not exceed the total cell count
currently stored in memory. ForceQuotes is an optional parameter that defaults to TRUE. If TRUE,
every cell value is quoted based on the AddQuotes parameter, otherwise only those cell values are
quoted that need to be.

The command VarFromOpenCsvNumber is similar to VarFromOpenCsv except it strips off any
leading $, space or comma found within the text so it represents a number that can be used in a
calculation.

Chapter 4: Script Commands

4-26

Additional commands are available to query, add, modify or delete CSV memory data. These
commands typically assume that the first row of data consists of field names that identify the data in
that column.

This command retrieves data from a CSV memory structure based on an exact, non case-sensitive
match.

CsvQuery(MatchField,MatchValue,ResultDelimiter,StatusVar,ResultVar,Field1,Field2,…)

The command assumes that data is already stored in memory. MatchField is the name of the field to
search. MatchValue is the value of the named field to match. ResultDelimiter is the delimiter used to
separate result values including COMMA or SEMICOLON. StatusVar is a variable that stores the
status of the command of SUCCESS, FAILED or NOMATCH. ResultVar is the variable name where
the result is stored. FieldX can be one or more named fields separated by commas for which the
value is returned in the ResultVar parameter.

This command retrieves a row number from a CSV memory structure into a named variable. The
command assumes that CSV data is stored in memory.

CsvQueryRow(MatchField,MatchValue,StatusVar,RowVar)

This command adds a row of data to the CSV memory structure. The command assumes the CSV
memory structure is already created. The number of supplied field values must match the number of
columns. Data is inserted at the row number or at the end of the CSV table if the specified row
exceeds the last row. The first row starts at 1 whether it starts with a header row or not. Here is an
example that adds data to the end of table assuming it has under 9999 rows.

CsvAddRow(Row,Field1,Field2,...)

This command replaces a row of data in the CSV memory structure. The command assumes the
CSV memory structure is already created and the number of supplied field values matches with the
number of columns. Data is replaced at the specified row number. The first row starts at 1 whether it
starts with a header row or not.

CsvReplaceRow(Row,Field1,Field2,...)

This command deletes a row of data in the CSV memory structure. The command does nothing if the
specified Row is larger than the maximum row. The first row starts at 1 whether it starts with a header
row or not.

CsvDeleteRow(Row)

This command returns the number of rows in the CSV memory structure into the named variable.
The first row starts at 1 whether it starts with a header row or not. ColVar is an optional parameters
that returns the column count.

CsvRowCount(RowVar,ColVar*)

This command sorts the rows in the CSV memory structure. SortColumn is the column of data values
that determine the sorted order. Direction is UP or DOWN to sort in ascending or descending
alphabetical order. Header is TRUE or FALSE to indicate if the first row should be sorted.

CsvSort(SortColumn,Direction,Header)

Chapter 4: Script Commands

4-27

This command is used to discover the format and size of a CSV file in the Plugins folder.
ColDelimiterVar is a named variable that returns COMMA, SEMICOLIN or TAB. RowDelimiterVar
returns LF, CR or CRLF. AddQuotesVar returns DQ, SQ or NQ.

CsvFormatFromPlugin(Filename,ColDelimiterVar,RowDelimiterVar,AddQuotesVar,
ColCountVar,RowCountVar,HeaderVar,StatusVar)

The number of columns and rows including the header row is returned in ColCountVar and
RowCountVar. A comma-separated list of header names from the first row is returned in the
HeaderVar variable. The StatusVar variable returns SUCCESS, NOTFOUND or FAILED if the file
does not satisfy a supported format.

This command retrieves a column of data from CSV memory structure into a sheet. CsvColumn is
the column number of the CSV structure. SheetID identifies target sheet, StartRow indicates the
starting row number and SheetColumn indicates the column used to store the data. Make sure sheet
has enough rows to hold all data in the CSV.

SheetColumnFromOpenCsv(CsvColumn,SheetID,StartRow,SheetColumn)

This command retrieves a row of data from CSV memory structure into a sheet. CsvRow is the row
number of the CSV structure. SheetID identifies target sheet, SheetRow indicates the number and
StartColumn indicates the starting column used to store the data. Make sure sheet has enough
columns to hold all data in the CSV.

SheetRowFromOpenCsv(CsvRow,SheetID,SheetRow,StartColumn)

This command presents the CSV Viewer dialog.

CsvShow()

This command loads CSV formatted data from a string. The string may come from a nested folder
Plugins folder or may have been read from disk and decrypted. It works exactly like the
OpenCsvFromPlugin command except data comes from the string rather than a file.

OpenCsvFromString(ColDelimiter,RowDelimiter,AddQuotes,StrVar,Cols,Rows)

This command stores CSV formatted data from memory to a string. It works exactly like the
SaveCsvToPlugin command except data is saved to the string rather than a file.

SaveCsvToString(ColDelimiter,RowDelimiter,AddQuotes,StrVar,Cols,Rows,ForceQuotes*)

This command creates a JSON formatted string from the active CSV memory structure and stores it
in StrVar.

CsvToJsonString(StrVar)

Chapter 4: Script Commands

4-28

Multiple CSVs
Initially, ExcelRT only supported a single CSV structure in memory to import and export data. Some
applications can be simplified and run much faster by storing multiple CSV structures in memory at
once. This allows the application to convert data from one CSV structure to another by adding,
removing or reordering columns or rows.

A CSV structure can also be used as a simple database. The workbook can load the CSV on open,
query for data and later save the CSV on workbook close if changes are made. CSV files can be
stored in the Plugins folder, in a Cloud Sharing account or elsewhere on the Internet.

ExcelRT supports 5 CSV structures. Most CSV related commands use CSV 1 by default. This
command assigns all CSV related commands that follow to use 1 of 5 CSV memory structures. The
CsvNumber parameter may contains 1 to 5 or a variable that contains the integer value.

CsvActive(CsvNumber)

For example, after the CsvActive(2) command, the CsvShow() command presents the CSV Viewer
dialog with data from CSV 2. All CSV related commands that do not specify the CSV number are
affected by the last CsvActive command.

This command copies a value from one CSV to another CSV. All parameters can be an integer or
variable containing an integer.

CsvCopyValue(FromCsv,FromRow,FromCol,ToCsv,ToRow,ToCol)

This command copies a column of values from one CSV to another CSV.

 CsvCopyColumn(FromCsv,ToCsv,Column)

This command copies a row of values from one CSV to another CSV.

CsvCopyRow(FromCsv,ToCsv,Row)

This command defines an array and copies in a row of values from a CSV. The number of columns in
the CSV determines the array size.

ArrayFromCsvRow(ArrayName,Csv,Row)

This command defines an array and copies in a column of values from a CSV. The number of rows in
the CSV will determine the array size.

ArrayFromCsvColumn(ArrayName,Csv,Column)

This command copies values from an array into one row in a CSV. The number of columns in the
CSV should match the array size.

ArrayToCsvRow(ArrayName,Csv,Row)

This command copies values from an array into one column in a CSV. The number of rows in the
CSV should match the array size.

ArrayToCsvColumn(ArrayName,Csv,Column)

Chapter 4: Script Commands

4-29

Fuzy Queries
Use this command to query CSV memory data for a fuzy match and return partial match row
numbers. Unlike a typical query command, matching data may have extra or missing spaces or
characters, phrases in a different order and other variations that may occur when comparing data
from different sources. A set of potential matches can be presented to the user to select the desire
match. Those user-selected matches can be stored so the system learns over time.

CsvFuzyQuery(MatchField,MatchValue,Strategy,StrategyMiss,SynonymArray,ConfirmedMa
tchArray,MaxMatch,MatchingRowsVar,StatusVar,IgnoreArray*)

This command assumes the CSV data includes one row of field names. MatchField can be an
integer value indicating the column of CSV data to use as the haystack being searched. If not an
integer, MatchField must match one of the field names in the first row of the CSV data. MatchValue is
the Needle text to compare against values in the haystack. StatusVar will return NOMATCH,
PARTIALMATCH, FULLMATCH or FAILED.

If status is PARTIALMATCH or FULLMATCH, then MatchingRowsVar contains one or more
semicolon separated row numbers. Use these row numbers to retrieve values from appropriate
column of those rows to present a dialog to the user. When the user selects the desired match, add
to the ConfirmedMatchArray and retrieve other fields from that CSV file based on the selected row.

Strategy

Strategy is a string containing identifiers that indicate which Strategies to use to find a match. For
example, assume several strategies are implemented. To use strategies 1 and 2, supply the Strategy
parameter value 12. To explain each strategy, the Needle is what you are searching for and the
Haystack is the column of values to be searched. Searches are NOT case sensitive.

The developer can choose the strategy priority. For example, a Strategy value of 132 runs strategy 1,
then 3 and then 2. The MaxMatch field allows the designer to terminate the search process early if a
specified number of matches are found. If the MaxMatch fields is 9 and 15 partial matches are found,
only the first 9 highest priority matches are returned.

Strategy 1 - Character Search

Individually search for each non-space Needle character in the Haystack. If EVERY character is
found, it’s a match.

Strategy 2 - Reverse Character Search

Individually search for each non-space Haystack character in the Needle. If EVERY character is
found, it’s a match.

Strategy 3 - Phrase Search

Individually search for each non-space Needle phrase (contiguous characters) in the Haystack. If
EVERY phrase is found, it’s a match.

Strategy 4 - Reverse Phrase Search

Individually search for each non-space Haystack phrase (contiguous characters) in the Needle. If
EVERY phrase is found, it’s a match.

Chapter 4: Script Commands

4-30

Strategy 5 - Partial Character Search

This is similar to the Character Search strategy, except allow X number of missed characters as
specified by the StrategyMiss parameter.

Strategy 6 - Partial Reverse Character Search

This is similar to the Reverse Character Search strategy, except allow X number of missed characters
as specified by the StrategyMiss parameter.

Strategy 7 - Partial Phrase Search

This is similar to the Phrase Search strategy, except allow X number of missed characters as
specified by the StrategyMiss parameter.

Strategy 8 - Partial Reverse Phrase Search

This is similar to the Reverse Phrase Search strategy, except allow X number of missed characters
as specified by the StrategyMiss parameter.

Synonym Array

The SynonymArray is the name of an array where each array element consists of one or more
semicolon separated synonyms such as ‘;ft;ft;feet;lf;lf. Prior to performing any search strategies, all
SynonymArray values are searched and removed from both the Needle and Haystack value. For a
synonym match to occur, the synonym name must have leading and trailing white space unless it is at
the beginning or end of the string.

Confirmed Match Array

The ConfirmedMatchArray is the name of an array containing values of the form Item1=MatchItem1
where Item1 is the Needle and MatchingItem1 is a user confirmed partial match from the Haystack.
Before considering the SynonymArray or search strategies, if the Needle is found in the
ConfirmedMatchArray, then search the Haystack for all MatchItems and return a FULLMATCH if
found.

Ignore Array

The optional IgnoreArray can be used to remove a set of words from the Needle and Haystack values
before applying synonyms or running search strategies. By removing common brand or descriptive
words from a list, a query command can yield better results. The IgnoreArray is typically constructed
using the CommonWords command, before using the CsvFuzyQuery command.

This command counts the occurrences of common words that appear in one array but not the other.
It returns an array of those common words. Array1 and Array2 are the input arrays. Count
determines how many occurrences designate a common word. Array3 contains the output.

CommonWords(Array1,Array2,Count,Array3)

Chapter 4: Script Commands

4-31

String
This command replaces all occurrences of Find with Replace in Source and stores the output string in
Result.

ReplaceStrWithStr(Source,Find,Replace,Result)

Use this command to put the character length of Source in Result.

Length(Source,Result)

Use this command to put the character index of Find string starting at 1 into Result. Source contains
the string to search, Find contains the string to search for, Start contains the Index from which to
begin the search and CaseSensitive contains TRUE or FALSE indicating whether or not to do a case
sensitive search.

Pos(Source,Find,Start,CaseSensitive,Result)

Use this command to copy a portion of the Source parameter to the Result parameter based on a
Start index and Length.

Mid(Source,Start,Length,Result)

To concatenate a variable length list of values into a destination variable use the Concat command.
DestVar is a variable or CellRef. If it does not identify a named variable or cell reference that exists,
an error is presented.

Concat(DestVar,Parm1,Parm2,Parm3,…)

The remaining parameters can be a variable or CellRef. If none of these exist, then the parameter is
assumed to be a literal string. In this example string “My name is John Doe” is constructed and
stored in a variable named Message.

Concat(Message,"My name is ",FirstName," ",LastName)

Use the FormatStr command to strip out characters not included in a supplied Format string. If
CaseSensitive is FALSE, then ignore case. If ErrorMsg is a non-empty string, then present an error
message if one or more characters are filtered out of the Source string.

FormatStr(Source,Format,CaseSensitive,ErrorMsg)

Chapter 4: Script Commands

4-32

Here is an example (assume these commands are on one line), that presents a dialog displaying
“Tom” from the original string of "1;-&’To2m”.

Button 1=DefineVar(FirstName,1;-
&'To2m)|DefineVar(Filter,abcdefghijklmnopqrstuvwxyz)|FormatStr(FirstName,Filter,FALSE,)
|MsgBox(FirstName)

This command presents an error message if any character does not match the filter.

FormatStr(FirstName,abcdefghijklmnopqrstuvwxyz,FALSE,Enter Alpha characters A..Z)

This command encrypts Source string into the Output string using a Password. Source is a variable
name or literal text. Output is the name of a variable holding the encrypted string. If either the
Source or Password text is under 5 characters, the output string is ERROR.

Encrypt(Source,Output,Password)

This command decrypts Source string into the Output string using the same Password used to
encrypt it. Source is a variable name or literal text. Output is the name of a variable holding the
decrypted string.

Decrypt(Source,Output,Password)

The Encrypt and Decrypt commands can be used to secure any text data including CSV files that you
want to distribute by email or on the Internet.

Chapter 4: Script Commands

4-33

Dialog
The Dialog command is used to present a custom dialog with up to 18 controls of type Edit, List,
Switch or Caption. Here is the list of parameters.

Dialog(Title,Btns,DlgResult,Control1,Control2,Control3,…)

The Title parameter names the dialog. The Btns parameter may contain 1 to 4 button names
separated by semicolons. These buttons are displayed at the bottom of the dialog and will dismiss
the dialog. The DlgResult parameter is a variable that contains the button name clicked by the user
to dismiss the dialog.

Each Control parameter can be one of four control types. Notice how the parameters within an
individual control are separated by the # character.

• Edit#Label#Result#Default
• List#Label#ListNames#ListValues#Result#Default
• Switch#Label#Result#Default
• Caption#Label#Help

Label is literal text or a named variable holding text. ListNames is a semicolon-separated list of
strings presented in the List control. ListValues is a semicolon-separated list of strings returned when
a user selects a list item. Result is the name of the variable holding the user selection. For a Switch
control, TRUE or FALSE is stored in Result.

Default is an optional parameter. For an Edit control it provides text that is initially stored in the edit
field. For a List control, Default is an integer starting with 1 that contains the default selection. For a
Switch control, Default is TRUE or FALSE.
Here is an example script (must be on one line) that presents a dialog when the user clicks on Button
1.

That dialog contains a List, an Edit field and a Switch plus Cancel and OK buttons at the bottom that
dismiss the dialog.

Button 1=Dialog(Student Data,Cancel;OK,DlgResult,List#Grade#First;Second;
Third#1;2;3#Grade,Edit#Your Name#Name,Switch#Male#Gender)

When the user clicks Button 1, the dialog titled "Student Data" is presented. The user can select
First, Second or Third to store 1, 2 or 3 into the Grade variable, type a name to store it into the Name
variable and click a checkbox to store TRUE or FALSE into the Gender variable. The DlgResult
variable contains the name of the button clicked to dismiss the dialog.

Dialog Presented with a Script Command

Chapter 4: Script Commands

4-34

A custom dialog can be presented on any platform including Mac, Windows, Linux, iOS or Android.
The user interface will be platform specific.

A subroutine of commands can be called before presenting a dialog to load its data. Another
subroutine of commands can be called based on which button is clicked. In this abbreviated
example, assume the dialog can be dismissed with two buttons Cancel and OK. If OK is clicked then
run Sub$OK else run Sub$Cancel.

Button 1=Sub$Load|Dialog(…)|IfDoEvent(DlgResult,=,OK,SubOK,SubCancel)

When testing a new dialog, use the Variables command on the File menu to present a window that
shows the name and value of each variable after dismissing the dialog.

A Caption control may include only a Label or both a Label and Help string. This example adds a
one-line description to the dialog.

Caption#This text explains how the dialog works

A Caption control that includes a Help string puts a blue ? at the top right of the dialog. When clicked
by the user, a Help dialog is presented. The Help dialog may contain multiple long paragraphs of text
where each is separated by a semicolon in the text. Do not include “,”, “#” or “)” in the help text.

 Caption#My Description#Paragraph1;Paragraph2;Paragraph3;Paragraph4

A dialog may include multiple Caption controls, but at most one of them should have a Help string. If
the Label field of a caption control is empty, there will be empty space in the dialog that could be used
to visibly separate and group other controls.

Dialog Control Help

Edit, List and Switch controls can be assigned to a URL for presenting images, help information or
videos. If help is available, a blue ? appears to the left of the control and when clicked will present the
URL in the default web browser.

To assign a help URL to a control, add &url=someURL to the Default field of that control as
illustrated here for an Edit control.

Edit#Name#NameVar#&url=http://whatsmyname.com

The optional Default field for a control can have a help URL, a default value, a default value plus a
help URL or neither as illustrated here.

• &url=http://whatsmyname.com
• Tom
• Tom&url=http://whatsmyname.com

Chapter 4: Script Commands

4-35

ReportBuilder
This command generates a consolidated reported from a variable number of inputs. It can be used to
generate a Material List, Purchase Order or Project Bid on a report sheet from inputs collected on
other sheets.

ReportBuilder(ReportSheetRange,HeaderRefList,SegmentedSubHeader,QuantityIndex,
UnitCostIndex,ExtendedCost,Condition,RoundUpQuantity,LastRow,InputTable1,InputTable
2,…)

ReportSheetRange is of the form SheetName!A1:D50 and identifies the Maximum cell range into
which a report can be generated including an optional Header row. All cells in the range are emptied
before building the report.

HeaderRefList is a semi-colon separate list of sheet specific cell references of the form
Sheet1!A1;Sheet1!B1;Sheet2!A1. This command gets a label from each referenced cell and uses it
as a bold header for one column of the report. If HeaderRefList is empty, the report will have no
header row.

SegmentedSubHeader field may either be empty or contain data to construct two types of reports.

If SegmentedSubHeader is empty, a consolidated report is generated where all rows with matching
ItemName column from all InputTables are consolidated into one row in the generated report.

If SegmentedSubHeader contains data, a segmented report is generated. The
SegmentedSubHeader field consists of cell references separated by semicolons with one cell for
each InputTable field. For example assume your report is built from 40 tables and each table has a
cell that identifies a section name like Section1, Section2 or Section3. The information for all tables
assigned to Section1 gets consolidated into that part of the report, all tables related to Section2 gets
consolidated into Section2 of the report, etc.

QuantityIndex refers to the item index of the Quantity column within the InputTable field where
ItemName is at index 1.

UnitCostIndex refers to the item index within the UnitCost column within the InputTable field where
ItemName is at index 1. If ExtendedCost is FALSE, the UnitCostIndex field can be 0 since it is not
used.

ExtendedCost is TRUE or FALSE. If TRUE, then QuantityIndex and UnitCostIndex fields must be
non-zero and an Extended Cost column is calculated and added to the right side of the constructed
report.
Condition is a semi-colon, separated column range each having the same number of rows as items
in the InputList. If the ReportBuilder references 20 InputTables, than this parameter contains 20
column ranges.

Each cell within the referenced column range contains TRUE or FALSE indicating if that row should
be included in the report. If you don’t use this feature the Condition field can be empty. Using
conditional logic within the workbook or script you can flag which rows to include in the report. You
could also allow the user to click checkboxes or have a user-clicked button run a script to determine
which rows to include.

RoundUpQuantity is FALSE or TRUE to indicate if quantity values should be rounded up to a whole
number after consolidation into a report.

Chapter 4: Script Commands

4-36

LastRow is a Variable name that will contain the last used row number after the report is generated.
This field can be empty if you don’t need it. Knowing the last used row in the generated report will
allow your script to construct a custom footer on the next row of the sheet. Your script already knows
what columns are used by the report. The LastRow field is also useful when you want to use
ReportBuilder command more than once on the same sheet since the report auto-sizes itself as
needed.

InputTable is a semi-colon separated list of input column references from a table of input cells. For
example, an input table containing columns ItemName, Quantity, Units, UnitCost might use an
InputTable field of the form Sheet1!A1:A50;Sheet1!B1:B50;Sheet1!C1:B50;Sheet2!A1:A50.
The first item in the list must refer to the ItemName that is used for consolidation in the generated
report. If the ItemName matches on multiple rows, then Units and UnitCost should also match. In the
consolidated report, the values for these rows come from the first consolidated row.

The input columns for a table are generally on one sheet. You can pull input data from columns on
different sheets, but the number of rows in the range should be same for each item in the list. The
ReportBuilder command may reference up to 100 different input tables, each referenced by a different
InputTable field.

Columns are not resized when building a report so size them appropriately on the empty sheet before
building the report. Make sure the output sheet has enough columns and rows to contain the
ReportSheetRange field you specify in the command. If you want a big bold and centered title that
spans multiple columns do that in the workbook itself or with script in the output sheet.

The ReportBuilder command is part of a script that generally runs after the user has entered
input table data and clicks a button. That script could also show the output sheet that may have been
previously hidden.

Chapter 4: Script Commands

4-37

Cell Data
The CellDataRead and CellDataWrite commands are intended for experienced developers
with a good understanding of how ExcelRT works internally. These commands can read or write
properties of any cell on any sheet. The write command in particular should be used with great
caution since invalid data can easily corrupt the ExcelRT file that leads to exceptions and other
abnormal behavior.

CellDataRead(SheetID,Col,Row,PropertyName1=Var1,PropertyName2=Var2,…)
CellDataWrite(SheetID,Col,Row,PropertyName1=Value1,PropertyName2=Value2,…)

These commands identify a specific cell by the sheet ID, column number and row number. SheetID is
an integer 1 to 15. For column A, use 1 in the Col parameter or for column C use 3.

Every cell in ExcelRT has a collection of properties that determine its value, the calculations
performed, how data is formatted, it text font, size and color, etc. These properties are normally
configured within Microsoft Excel prior to conversion to ExcelRT or maintained internally by ExcelRT.

To understand cell properties and valid values, present the Cell Data dialog for a selected cell in
ExcelRT while in Design mode (with an XML file opened). Here is a list of cell property names used
by the CellDataRead and CellDataWrite commands.

BackgroundColor, BarProperties, Borders, Choices, Comment, Custom, Dependency,
Enabled, Format, Formula, LimitText, MergeArea, Pattern, TextBold, TextColor, TextFont,
TextInvisible, TextItalic, TextJustify, TextJustifyV, TextMultiLine, TextSize,
TextStrikeThrough, TextUnderline, TextWrap, CellType, Validation, Value

In this example, the background color is set to green and text color is set to red for cell C5 on the first
sheet. Colors are represented as RGB values (Red.Green.Blue) where each component is a number
between 0..255. The write command may include any number of property value pairs where the
value portion can be a literal value as shown here or a named variable that contains the value.

CellDataWrite(1,3,5,BackgroundColor=0.255.0,TextColor=255.0.0)

In this example, the command returns a value of true or false into the variable named BoldVar
depending on whether or not the text style is Bold.

CellDataRead(1,3,5,TextBold=BoldVar)

Chapter 4: Script Commands

4-38

Cell Controls
Cell controls provide an advance feature that is only available with a script command. A script can
create controls like checkboxes or radio buttons directly within a cell instead of defining them in the
MS Excel file. The script can dynamically control the state or text of cell controls and even show or
hide them by showing or hiding a column or row.

From Microsoft Excel, you can create two types of cells (Locked and Unlocked). In ExcelRT, locked
cells show non-editable text and Unlocked cells provide an Edit box when selected. The Cell
Properties dialog for a selected editable cell in ExcelRT, shows properties like Cell Type, Value and
Choice.

The CellType property can hold several valid values:

0 = Non-Editable Text
1= Editable Text
2 = Popup Menu
3 = Combobox
4 = Checkboxes
5 = Picture
7 = Progress Bar
8 = Radio Buttons
10=Button

Non-Editable Text

The CellDataWrite command can be used to change the CellType. In this example, the cell at B3 on
sheet 1 is changed to a non-editable cell.

CellDataWrite(1,2,3,CellType=0)

Checkbox

To create a checkbox named Adult in B3, use this command.

CellDataWrite(1,2,3,CellType=4,Choices=Adult)

If unchecked, the cell value is empty. When checked, the cell value contains the word Adult. In the
following example, B3 contains three checkboxes and displays the result in a MsgBox when a button
named ShowBtn is clicked.

CellDataWrite(1,2,3,CellType=4,Choices=Adult~Married~Citizen)
ShowBtn=VarFromCell(State,B3)|MsgBox(State)

Notice how three values are supplied in the Choices
property separated by the ~ character.

Chapter 4: Script Commands

4-39

ExcelRT actually expects a comma character to separate choice values, but since comma is used to
separate command parameters in a script, you must use ~ instead.

If all three checkboxes are set, the MsgBox shows: Adult,Married,Citizen

Radio Buttons

In this example, two radio buttons are presented in cell B3 and Male is the default selection. When
the user selects the Female radio button, the cell value is set to Female.

DefineVar(Sex,Male)|VarToCell(Sex,B3)|
CellDataWrite(1,2,3,CellType=8,Choices=Male~Female)

Popup Menu

In this example, when cell B3 is clicked a popup menu allows Red, Green or Blue to be selected. The
cell now holds the selected value. When using a Popup menu control, you may first want to assign a
default value to the cell. For iOS, user must double-click to present the Popup menu.

 CellDataWrite(1,2,3,CellType=3,Choices=Red~Green~Blue)

ComboBox

To present a ComboxBox instead of a Popup menu, use CellType 4. With a ComboBox, the user can
pick one of the defined choices and type their own value.

For iOS, user must double-click to present the ComboBox menu.

Picture

A picture can be loaded into memory from an image file stored in the Plugins folder, then copied into
a cell. The picture can be used like a button control to perform an action when clicked or to display
user data. Pictures can be large and are not stored with the ExcelRT file itself.

Static pictures used in controls are generally supplied to the Plugins folder when the product is
installed. If ExcelRT files are shared between devices, user provided pictures can be stored in the
Plugins folder for offline use, but the master copy of the picture should be stored in the cloud for use
across devices.

Chapter 4: Script Commands

4-40

Progress Bar

To present a Progress Bar, use CellType 7 with the Min and Max value of the Progress Bar defined in
the Choices property and the cell value represented by the bar itself.

CellDataWrite(1,2,3,CellType=7,Choices=1~100,TextColor=255.0.0)

Here is an example of the Progress Bar with a cell value of 25 when the Min and Max values are 1
and 100.

Button

Set the background color and center the text to create a rectangular button within a cell. Use
OnCellClick[SheetID,Column,Row] event to run a script when clicked.

Chapter 4: Script Commands

4-41

Sheet Resize
The total number of cells in a workbook will largely determine the file size and open and save time.
For each sheet, add together the row count times the column count to determine the total cell count
for a workbook.

By default, an ExcelRT file is typically sized to support the maximum columns and rows that will ever
be required on each sheet. Some workbooks can be dramatically optimized to reduce file size and
increase performance by adjusting the size of each sheet as needed to accommodate data or present
temporary reports.

For example, a sheet could start with 10 columns and 10 rows or 100 cells. As data is entered, a
script command can increase the sheet size to 20 rows, then 30 rows, etc. At 500 rows, the cell
count is 5000 cells. The file will consume 50 times more disk space and take over 50 times longer to
open.

Reports generated with the ReportBuilder command can be optimized for size and speed. Use the
OnSheetActivate event to grow the sheet size and generate the report. Use the OnSheetDeactivate
command to shrink it back to the minimize size. Use the OnClose event to return to the home sheet
so all report sheets are minimized prior to saving the file.

Use this command to increase or shrink the columns and rows on a named sheet.

SetSheetSize(SheetName,ColCount,RowCount)

When a sheet is expanded, the new cells are completely empty. They contain no data or formatting.
Perhaps you would like to left or right justify the text in those cells, give it a currency format or a text
or background color. This command copies all the cell properties from a reference cell to an entire
range of new cells.

SetCellStyle(CellRef,Range)

Chapter 4: Script Commands

4-42

Feature Control
QuickLicense and Cloud License support Feature flags for a Serial Number activated Product within
ExcelRT. Feature flags can be used to make sheets visible, show or hide a range of cells, enable
buttons, scripts or whatever is needed within a workbook.

Feature flags are available to all instances of a workbook created from the Open Data File window. If
a Serial Number allows activation on multiple devices, the same feature flags exist. If a license is
released on one device and activated on another, the feature flags move with the license.

One hundred Feature flags are associated with each Serial Number and set with a checkbox from
Safe Activation. Feature flags can be indirectly set from a shopping cart, InApp purchase, your
website via the LicenseSupport API or in other ways.

When a product is activated within ExcelRT with a Serial Number, the workbook can access a 100-
character string using the Features symbol. Each character is 0 or X where X indicates that feature is
enabled. This command reads the Feature flag string into a variable named Flags.

SymbolValue(Flags,Features)

These commands extract character 1 into IsF1, then sets S1Visible to TRUE if it is an X and
finally shows or hides Sheet9.

Mid(Flags,1,1,IsF1)|IfSetVar(IsF1,=,X,S9Visible)|SheetProperties(9,Sheet9,S9Visible)

When using QuickLicense for a desktop app, Feature flags are read from the Safe Activation server
into the local device using the License Options dialog. On application launch, hold down the Shift
and Command keys to present the License Options dialog, select the Refresh Features panel and
click OK. Your ExcelRT script must first run command QuickLicenseStandalone to access the
Features symbol.

QuickLicenseStandalone(Product,Security)

An InApp purchase within an ExcelRT product using Cloud License or QuickLicense will immediately
set purchased Feature flags within the running Product.

Credit Card and Paypal
This section describes commands used to process credit card or Paypal payments from within a
workbook. This process can only be used for an activated product. It requires a free Paypal
merchant account to process credit card or Paypal payments and a Vendor account on Safe
Activation Service 3 to register your Paypal merchant credentials.

Two payment processes are supported. Use either or both process to sell any number of items within
your application. Purchased items may enable advanced features or sheets within your workbook or
result in delivery of completely independent products or services.

• Vaulted Credit Card
• Paypal Payment

Only a couple commands are required to complete an InApp purchase as documented below.
Additional information is available in an ExcelRT sample file, video or online help within a Safe
Activation vendor account.

Chapter 4: Script Commands

4-43

Alternatively, a Purchase button on the Open Data File window can be configured without any script
commands. This approach is documented separately and will be the easiest and most convenient
way to sell items for most projects.

These commands are only valid from within an activated product:

• Standalone Application
• Shared QuickLicense Product
• Shared Cloud License Product

Call this command from the OnOpen event or prior to other payment commands. The Product and
Security fields must exactly match those fields in the main QuickLicense window for the generated
Ticket.

QuickLicenseStandalone(Product,Security)

Vaulted Credit Card

This approach uses one command to vault credit card data in the Paypal payment processor and later
a second command can be used to make a purchase on the vaulted credit card. The credit card is
kept on file and can be used for multiple transactions. The user doesn’t know that Paypal is
processing the payment, they’ll just see the product purchase from your company on their credit card
bill.

This command vaults credit card data provided by the user. Result1 and Result2 are names for two
return variables. Result1 will contain the values CANCEL, FAILED or SUCCESS. If SUCCESS,
Result2 contains the CardID of the vaulted card.

PaypalVaultStore(Merchant,CardType,CardNumber,CardCVV,CardYear,CardMonth,CardFi
rstName,CardLastName,Result1,Result2)

Merchant is an arbitrary string that you provide like YourCompanyName that identifies vaulted credit
cards for that merchant within your Paypal account. CardType must be visa, mastercard, amex or
discovery. CardNumber is the credit card number. CardCVV is a security code. CardYear is a 4-
character string like 2018. CardMonth is a number 1 to 12. CardFirstName and CardLastName
provide the name on the card.

This command prompts the user for card data and vaults the credit card data. It returns the same
Result1 and Result2 variables.

PaypalVaultStorePrompt(Merchant,Result1,Result2)

After vaulting a credit card, call this command to store the CardID. That computer or device will
remember the CardID so it can be used with future transactions.

SetCardID(MyCardID)

To retrieve a CardID, use the CardID symbol with the SymbolValue command.

SymbolValue(MyCard,CardID)

Use this command to make a purchase with a vaulted credit card.

PaypalVaultPay(CardID,ItemName,ItemQuantity,ItemPrice,ItemFeature,
Currency,Description,Invoice,Shipping,Tax,Amount,Fields,Result1,Result2)

Chapter 4: Script Commands

4-44

Parameters ItemName, ItemQuantity, ItemPrice, ItemFeature can represent one or more items for
purchase. The ItemFeature is an integer value 1 to 100 to represent a Feature flag that is set if the
purchase is approved or 0 if Feature flags are not used.

The Currency field is USD for US dollars. Description is a short text field that describes the purchase.

Every purchase must have a unique Invoice number or it will be rejected. The easiest to accomplish
this is to leave that field empty (but present) and Safe Activation will provide a sequentially
incrementing Invoice number regardless of which customer application makes a purchase.

Here is an example of the PaypalVaultPay command where quantity 2 of Item1 is used at a price of
$10.00 each. The total also includes $5.00 shiping and $1.25 tax. Keep in mind that this command is
one line in the Script editor. The first parameter is the CardID returned by the original
PaypalVaultStore command.

PaypalVaultPay(CARD-4WK07283PT214793KLHTCSAY_2018-04-30_1317,Item1,2,10.00,
,USD,Description,,5.00,1.25,26.25,email-excel@spinn.net,Result1,Result2)

Here is another example, where Item1 is associated with Feature flag 1 and Item2 is associated with
Feature flag 2. Notice how ! is used to separate the names Item1 and Item2. Likewise, the quantity,
price and feature flags fields are separated the same way.

PaypalVaultPay(CARD-4WK07283PT214793KLHTCSAY_2018-04-
30_1317,Item1!Item2,1!1,10.00!20.00,1!2,USD,Description,,5.00,1.25,26.25,
,Result1,Result2)

The Shipping and Tax fields can be empty or an amount. Make sure the Amount field reflects the
total quantity times the price for each purchased item plus the shipping and tax. If Amount is
incorrect, the order is rejected. If a payment is rejected, the Result1 variable has a value of FAILED
or CANCEL. If FAILED, the Result2 value may provide the reason.

The Fields parameter can be empty or contain one or more field name and value pairs as illustrated
here. Notice there are 3 field-value pairs separated by the ! character. The field names are company,
phone and email.

company-Excel Software!phone-7024457645!email-excel@spinn.net

If payment is successful, Result1 value is SUCCESS and Result2 value is the assigned Invoice
number.

The value of CardID has three parts separated by _ character. The first part is used by Paypal to look
up the credit card data within their vault. The second part is the date that determines how long it is
stored in the vault. This depends on the card expiration date and how long Paypal chooses to store
card data. The final part is the last 4 digits of the credit card number.

CARD-4WK07283PT214793KLHTCSAY_2018-04-30_1317

Chapter 4: Script Commands

4-45

Paypal Payment

This command presents a familiar Paypal checkout process presented within a dialog. The user
navigates through a series of screens selecting the payment source and credentials within their
Paypal account. Once the payment process is completed, the dialog will disappear.

PaypalAccountPay(Item1,1,10.00,1,USD,Description,,,,10.00,,Result1,Result2)

If a payment is rejected, the Result1 variable has a value of FAILED or CANCEL. If FAILED, the
Result2 value may provide the reason. If the user clicks the Cancel button before the payment
process is completed, then Result1 contains CANCEL and Result2 is empty.

If payment is successful, the Result1 variable is SUCCESS and Result2 variable is the assigned
Invoice number. All other parameters work they same as they do in the PaypalVaultPay
command.

Stripe Payment
Stripe payments can be processed within an ExcelRT application. To use this feature, the developer
needs a Stripe and Safe Activation Service 3 account. From Safe Activation, configure a Product or
Subscription button that presents the Stripe checkout page.

Typically a button on your website takes the user to the Stripe checkout page. After entering credit
card data to complete the purchase, the user is returned to a completion page on your website where
they can be given further instructions or download software. There are several ways to offer a similar
experience within an ExcelRT application.

A script command can present a URL in the default web browser that handles the purchase process.
In this example, when the user clicks Button1, a browser window is presented to complete the
purchase. Alternatively, add a page to your website with a product description and the Buy button.

Button1=ShowURL(https://www.safeactivation.com/stripe.php?db=6&vendor=20080503&or
der=4&button=Product1)

The ShowHTML command presents a dialog that displays an HTML page. That page can be
constructed within your script to include a description and a Buy Now button that presents the Stripe
checkout page.

The Stripe checkout process can run within an HTML Form Control on a workbook sheet.

Chapter 4: Script Commands

4-46

In this example, the Form Control is presenting just a Buy button that when clicked presents the
Stripe checkout process. Alternatively, an HTML source page in the Plugins folder could include a
description, image and the Buy button.

Here is an example of the Stripe checkout process running within an HTML Form Control on a
workbook sheet.

Chapter 4: Script Commands

4-47

Message Dialog
These commands are used to present a message in a dialog.

This command presents a message dialog with one or more lines of text separated by commas. Only
one parameter is required, but up to 10 can be included. Each line of text starts on a new line and is
followed by a blank line. If the line is too long, it wraps to the next line. Adding comma at the end of
the parameter list can increase the dialog height.

MsgBox(Text1,Test2*,…)

Display a movable message dialog with the supplied Title and specified Width and Height. Position
can be TopLeft, Left, BottomLeft, TopCenter, Center, BottomCenter, TopRight, Right and
BottomRight. There can be 1 to 10 lines of comma-separated text. Each chunk of text is displayed
as a separate line although if long enough it wraps to the next line.

MsgBoxMove(Title,Width,Height,Position,text,text2*,text3*,...)

Display a movable modal dialog with the supplied Title and specified Width and Height. Position can
be TopLeft, Left, BottomLeft, TopCenter, Center, BottomCenter, TopRight, Right and BottomRight.
There can be 1 to 10 lines of comma-separated text. Each chunk of text is displayed as a separate
line although if long enough it wraps to the next line.

MsgBoxModal(Title,Width,Height,Position,text,text2*,text3*,...)

Display a movable, resizable modal dialog with the supplied Title and specified Width and Height.
Text displayed in the dialog is editable, scrollable and can be saved to the Desktop in a plain text file
name specified by DlgTitle. Set Editable to TRUE to make displayed text editable by user. OK and
Save provides the button name and if empty, makes that button invisible.

MsgBoxSave(Title,Width,Height,Position,Editable,OK,Save,text,text2*,text3*,...)

Position can be TopLeft, Left, BottomLeft, TopCenter, Center, BottomCenter, TopRight, Right and
BottomRight. There can be 1 to 10 lines of comma-separated text. Each chunk of text is displayed
as a separate line although if long enough it wraps to the next line.

In ExcelRT Cloud, dialogs are always centered and non-movable so MsgBoxMove and MsgBoxModal
work the same and the Position parameter is always ignored.

Chapter 4: Script Commands

4-48

Miscellaneous
This command is used to assign a format to a specified range of cells.

FormatCells(Range,Format)

Microsoft Excel uses the General format for cells that contain plain text. By default, ExcelRT can only
read and write 1-byte encoded ASCII text in cell values. This works fine for most workbooks.

Some human languages cannot be represented with ASCII text characters. ExcelRT supports a
special format named Unicode that is similar to General except that it does allow the cell value to
read, write and display a Unicode string value.

During the conversion process, ConvertExcelRT can convert each cell with General format to
Unicode format. Alternatively, if only a small subset of cells need to accept human entered Unicode
text, use the FormatCell command in an OnOpen event to assign that Format to those specific cells
as illustrated here.

OnOpen=FormatCells(Config!A5:D10,Unicode)

To recalculate the workbook after changing cells or importing data, use Recalculate(). The
recalculation process is usually the most time consuming feature in a workbook and offers the best
opportunity for speed optimizations.

The Recalculate(Parm) command accepts one parameter of TRUE, FALSE or a Sheet Title. A value
of TRUE recalculates all sheets and FALSE only recalculates the current sheet. TRUE is assumed if
no parameter is provided. To recalculate cells on a specific sheet, provide the sheet title as illustrated
here:

 Recalculcate(Sheet1)

Use the RecalculateRange(CellRange) command to recalculate a specific cell range as illustrated
below. The CellRange can be a literal value or variable name.

RecalculateRange(Sheet1!A1:G20)

The SetRecalculate(Algorithm) command can change the recalculation algorithm. The
Algorithm parameter must be RecalcFull, RecalcSheet, RecalcDependency or
RecalcNone.

To redraw the workbook, use Redraw().

To save the workbook, use Save().

The Print() command presents the Print Selection dialog, then prints the selected sheets.

To select a specific sheet, use ShowSheet(SheetName).

To change the title or visibility of a sheet, use this command. ID is an integer value 1 to 15 or variable
containing the value. Identify a sheet by ID number from left to right starting with 1. Title is a named
variable or text representing the sheet name. The Visibility parameter is TRUE or FALSE or a
variable containing that text.

SheetProperty(ID,Title,Visibility)

Chapter 4: Script Commands

4-49

Do not change properties of the sheet that is currently displayed. The SheetTitle command is a bit
unusual in that you can change the title of the current sheet. The screen is redrawn once the script
completes. The title change is not persistent when you close the ExcelRT file on a desktop app or
switch to a different screen on iOS.

 SheetTitle(NewTitle)

Show and hide rows or columns with RowVisible(SheetName,From,To,State) and
ColumnVisible(SheetName,From,To,State) as illustrated here.

RowVisible(Sheet1,2,3,TRUE)
ColumnVisible(Sheet2,3,3,FALSE)

These commands can get or set the row height and column width properties of one or more rows or
columns. From and To is the start and end row or column number.

RowHeightSet(SheetName,From,To,Height)
RowHeightGet(SheetName,From,To,Height)
ColumnWidthSet(SheetName,From,To,Width)
ColumnWidthGet(SheetName,From,To,Width)

This command will stop the script and present the Variables window. View or edit variables, then
close the window to continue the script processes. This command is ignored on iOS and Android.

Debug()

A line in the script may include comments. Add // at the beginning of the line to comment out the
entire line. Add // somewhere after the = character to comment out the last part of a line of script.
These examples, demonstrate both types of comments.

//Button 1=MsgBox(Hello1) |MsgBox(Hello2)

Button 1=MsgBox(Hello1)//|MsgBox(Hello2)

// Here is a developer comment that is ignored when executing the script

This command changes the navigation order of data entry in a sheet when pressing the Tab or Enter
key between entered values. By default, the selected cell moves left to right. Use a State parameter
of TRUE to navigate top to bottom.

TabDown(SheetName,State)

These commands show or hide horizontal or vertical gridlines. The State parameter is TRUE or
FALSE.

GridlineHorizontal(SheetName,State)
GridlineVertical(SheetName,State)

These commands show or hide the Header Row or Header Column for a sheet identified by name.

HeaderRow(SheetName,State)
HeaderColumn(SheetName,State)

Chapter 4: Script Commands

4-50

This command presents the text contents of the Clipboard in a dialog and allows the developer to
change the clipboard contents while executing the script. This command is useful for debugging
purposes when reading and writing text data to the clipboard. For CSV formatted clipboard style, use
Carriage Return (CR) to separate rows.

ClipboardTextDialog()

This command presents the text of a named variable into an editing dialog. The Title parameter can
be text or a variable containing text to name the dialog.

TextDialog(TextVar,Title)

This command suspends script execution for specified number of milliseconds but allows other tasks
like screen redraw to occur in a Desktop app. For ExcelRT Cloud, screen redraw only occurs when
the script completes.

DoEvents(MilliSeconds)

Platform Specific Files
These commands only apply to Mac or Windows desktop applicatons. These commands read and
write to platform specific file paths when interacting with a user or another program.

This command looks for the existence of a file at the specified path, then returns TRUE or FALSE in a
named variable. FilePath is a literal string or variable name.

FileExists(FilePath,VarName)

This command deletes the file at the specified path. FilePath is a literal string or variable name.

FileDelete(FilePath)

These commands copy files to or from the Plugins folder. FileName identifies the file without a file
path inside the Plugins folder. FilePath is a literal string or variable name containing a file path
outside of the Plugins folder.

FileCopyToPlugin(FilePath,FileName)
FileCopyFromPlugin(FilePath,FileName)

This command prompts the user for a location on disk and then copies FileName from the Plugins
folder to that location. FileExt is an optional parameter that allows you to force the file extension
regardless of what the user enters. PromptText is an optional parameter that allows you to add
description text to the dialog.

FileSaveAsFromPlugin(FileName,FileExt*,PromptText*)

In ExcelRT Cloud, the FileSaveAsFromPlugin presents a dialog with a download link. When clicked
the file from the Plugins folder is downloaded to the Downloads folder of that computer. The
Download command directly downloads the named file from the Plugins folder.

Download(FileName)

Chapter 4: Script Commands

4-51

These commands prompt the user for a file or folder location. FilePath is the name of a variable that
holds the full path to the selected file or folder. If the use cancels the presented dialog, then the
FilePath variable is empty. InitialPath is an optional parameter that specifies the initial folder
presented by the selection dialog.

PromptForFile(FilePath,InitialPath*)
PromptForFolder(FilePath,InitialPath*)

This command returns a colon-separated list of files in folder. The optional Filter returns only files
with a specific extension. Filter can be one or more semicolon separated file extensions of the form
.jpg;.png.

FilesInFolder(FolderPath,ListVar,Filter*)

Run a command line (DOS or Unix shell command) and return the result if any in ResultVar. If the
path to command contains spaces, it is safer to use optional Parms command to provide parameters.

Shell(Command,ResultVar,Parms*,ExitCode*,Pipe*)

ExitCode is an optional variable name that will contain 0 if success or a system supplied error code.
Pipe is an optional parameter to provide a character replacement for a Linux Pipe since | is used to
separate ExcelRT commands. For example, use ; instead of | in command, then use ; as the Pipe
parameter.

Chapter 4: Script Commands

4-52

Splitting & Scaling Images
When generating a large report from a sheet, it may not fit well on a printed page. A large image
scaled down may become too small to read. On a desktop computer you may be able to split the
print into multiple pages but some rows may get split between two pages.

This command generates one or more JPG files from the current sheet for the purpose of printing
those images or sending them to another computer. This allows long reports with hundreds of rows
to be readable when printed. It assumes that the width of all columns in the image is acceptable on
the printed page.

SplitSheetToJPGs(BaseFileName,RowCount,PageCount,JPGFileList,Scale*)

Rows are split nicely on row boundaries with the maximum number of rows per image determined by
RowCount. PageCount is a return variable to indicate the number of JPGs created. Generated JPG
files are given a name from the BaseFileName and index number.

JPGListFile is a return variable name that stores a semicolon-separated list of generated image file
names. This variable provides a convenient way to send those images to another user or computer
by email or storage commands described in the Vendor Commands section.

Scale is an optional parameter that defaults to 2 if absent. A Scale value of 1 creates an image at
screen resolution of 72 pixels per inch. A Scale value of 2 creates an image at 144 pixels per inch.
The size of an image grows exponentially as Scale is increased so you’ll seldom want a Scale value
larger than 3 or 4.

Here is an example that creates three JPG images into the Plugins folder named Report1.jpg,
Report2.jpg and Report3.jpg for a sheet containing 120 rows. The first image has 50 rows, the
second has 50 rows and the third has 20 rows.

SplitSheetToJPGs(Report,50,PageCount,JPGFileList)

The SplitSheetToJPGs command generates images from the currently active sheet. The user must
switch tabs to see each sheet.

To call the SplitSheetToJPGs command in a script that is initiated from a different sheet (like a
button on Home sheet), you will need to use the following command to first navigate to the desired
sheet and navigate back when done.

ShowSheet(SheetName)

This command is used to scale a JPG image or list of images. The image is scaled up
proportionately until either the maximum width or height limit is reached.

ScalePluginJPG(Filename,MaxWidth,MaxHeight)

Filename is the name of a JPG file in the Plugins folder or a variable that contains the file name. You
can supply a semi-colon separated list of file names. MaxWidth or MaxWidth is an integer or variable
that contains an integer. By entering the desired pixel size of the image it can be adjusted to fit a
piece of paper.

Chapter 4: Script Commands

4-53

Here is an example:

ScalePluginJPG(Report1.jpg;Report2.jpg;Report3.jpg,800,1600)

This command is designed to create print-ready images by scaling them to fit on a piece of paper with
desired margins. Paper and Margin sizes are given in inches. JPGList can be the name of an image
file from the Plugins folder. It is typically a semicolon-separated list of file names when this command
follows the SplitSheetToJPGs command.

JPGForPaper(JPGList,PaperWidth,PaperHeight,HorizontalMargin,VerticalMargin,Scale*)

Scale is an optional integer where 1 indicates 72dpi, 2 is 144 dpi, etc. If no parameter is supplied, the
default scale is 2.

Plugin Files
Several commands are available to manage files in the Plugins folder. Use this command to rename
a file in the Plugins folder. If NewFilename already exists, it is overwritten. The optional FolderName
field can be the name of an existing folder within the Plugins folder or a nested folder using format
Folder1:Folder2.

PluginFileRename(OldFilename,NewFilename,FolderName*)

Use this command to duplicate a file. If NewFilename already exists, it is overwritten. The optional
OldFolderName and NewFolderName fields can be the name of an existing folder within the Plugins
folder or a nested folder using format Folder1:Folder2.

 PluginFileDuplicate(OldFilename,NewFilename,OldFolderName*,NewFolderName*)

Use this command to delete a file. If Filename doesn’t exist, nothing happens. The optional
FolderName field can be the name of an existing folder within the Plugins folder or a nested folder
using format Folder1:Folder2.

 PluginFileDelete(Filename,FolderName*)

Use this command to create a file in the Plugins folder from the supplied Variable or literal string. If
Filename exist, it is overwritten.

 PluginFileFromString(Filename,StrVar,FolderName*,Raw*)

Use this command to set the value of the named variable from the text contained within the named
file in the Plugins folder.

 PluginFileToString(Filename,StrVar,FolderName*,Raw*)

The optional FolderName field can be the name of an existing folder within the Plugins folder or a
nested folder using format Folder1:Folder2

Chapter 4: Script Commands

4-54

When reading or writing a plugin file from a string, use # to represent a carriage return and linefeed
within the string or ~ to represent a comma. For example, this command creates a text file named
MyFile containing 3 lines as illustrated below.

PluginFileFromString(MyFile,Line1#Line2#Line3 1~2~3)

MyFile
Line1
Line2
Line3 1,2,3

The optional Raw parameter can be set to TRUE to override the substitution behavior. For example,
assume you want to set a string variable from data in a text file, then load a CSV memory structure
with data from that string. You need to retain CRLF separating rows and , characters separating
commas. Set the Raw parameter to TRUE.

To check for the existence of a file in Plugins folder, use this command that specifies the FileName
and the name of a variable into which is stored TRUE or FALSE. The optional FolderName field can
be the name of an existing folder within the Plugins folder or a nested folder using format
Folder1:Folder2.

PluginFileExists(FileName,VarName,Folder*)

This command clones the current ExcelRT file into the Plugins folder. If the BaseFileName parameter
is empty, the new file has the same name. If not empty, the new file is named with the BaseFileName
plus the applicable .xml or .ert extension.

CloneToPlugin(BaseFileName)

This command could be combined with another command to email, upload or store the file online for
use by another computer or person.

This command creates a folder in the Plugin folder if it does not already exist. To create a nested
folder, FolderName can use form Folder1:Folder2.

PluginFolderCreate(FolderName)

This command deletes a folder in the Plugin folder if it exists. To delete a lower nested folder,
FolderName can use form Folder1:Folder2.

PluginFolderDelete(FolderName)

This command checks for the existence of a folder in the Plugins folder. Specify the FolderName and
the name of a variable into which is stored TRUE or FALSE. For a nested folder, FolderName can
use form Folder1:Folder2.

PluginFolderExists(FolderName,VarName)

This command presents a Text Editor to create or edit plain text files in the Plugins folder. If Filename
is provided, the text file is opened. FolderName can reference a folder in the Plugins folder or a
nested folder using Folder1:Folder2.

PluginTextEditor(Filename*,FolderName*,Title*,BtnNames*)

Chapter 4: Script Commands

4-55

A non-empty Title string replaces the dialog title. BtnNames is a semicolon-separated list of button
names to rename or hide buttons. If the name is empty in the semicolon-separated list, that button is
not displayed. Also include the word Radios as the last item in list to show the Line Ending radio
buttons in the Text Editor dialog.

PluginTextEditor(MyData.txt,,,New;Open;Save;Find;Done;Radios*)

This command retrieves and image from the Internet and stores it in a file in the Plugins folder.

PluginFileFromURL(Logo.jpg,LogoUrl)

This command replaces the image displayed by a Picture control.

ReplacePictureFromPlugin(TitleSheetName,LogoPicture,Logo.jpg)

Chapter 4: Script Commands

4-56

Google Map and Direction
These commands can be used to present a specified location on a Google generated map or the
directions between two specified locations.

The GoogleMap command presents a map. It must include at least two parameters. If additional
parameters are supplied, intermediate parameters are required even if empty. Each parameter can
be a literal parameter with or without quotes or a variable name.

GoogleMap(Title,Location,Address,City,State,Country,Zip,Size,Position)

Here is a simple example, the presents a map showing the Empire State Building.

GoogleMap(Landmark,Empire State Building)

If the Title parameter is Browser, the google map is presented in the default web browser independent
of the ExcelRT application. The Size and Position parameters are ignored.

If the Title parameter is not Browser, that text is presented in the title of a browser dialog. The
Location parameter supplies a landmark location like “Empire State Building” or can be empty. Not all
parameters are required. If you supply the City and State, Google can guess the Zip or vice versa.

The Size parameter can be empty, Maximize or WxH where W is a pixel width and H is a pixel
height. The Position parameter can be empty, TopLeft, Center, TxL or RelativeTxL where
T represents Top position in pixels and L represents Left position in pixels.

The RelativeTxL is a relative top and left position from the top left corner of the ExcelRT window
itself rather than the top left corner of the screen. Here is a valid example where the presented
Browser window is offset down 100 and left 200 pixels from the top left corner of the ExcelRT window.

Relative100x200

This example shows a map containing the Empire State Building in a window 1200x800 pixels
positions centered on the screen.

GoogleMap(New York Landmark,Empire State Building, , , , , ,1200x800,Centered)

Chapter 4: Script Commands

4-57

The GoogleDirection command presents a map with directions and a path drawn between two
locations on the map.

GoogleDirection(Title,FromLocation,FromAddress,FromCity,FromState,FromCountry,FromZip,T
oLocation,ToAddress,ToCity,ToState,ToCountry,ToZip,TravelMode,Size,Position)

If the Title parameter is Browser, then google direction is presented in the default web browser
independent of the ExcelRT application. The Size and Position parameters are ignored. If the Title
parameter is not Browser, that text is presented in the Title of the presented browser dialog.

This command requires a minimum of 8 parameters and the remaining are not required. Required
parameters can be empty as illustrated in the GoogleMap command. The parameters are similar to
the GoogleMap parameter except a From and To location is specified. The TravelMode parameter
can be empty or one of these specific values driving, walking, bicycling or transit.

Pictures
These commands are used to store a picture in a cell. When an ExcelRT file is opened, the named
picture list is empty. A command can load a picture from an image file in the Plugin folder,
manipulate the picture and assign it to a cell. A cell picture can present user data or represent a
control that can be clicked to run a script.

A Picture can be referenced by its name and used while the file is open, but is not saved with the
ExcelRT file itself. To make ExcelRT files portable across devices, use script commands to store the
master copy of each picture in the Cloud and keep a local copy in the Plugin folder.

Use these commands to load or save a picture from an image file in the Plugin folder. If Scale is 1,
no scaling occurs. Scaling can be useful when using the same picture across multiple platforms by
assigning a platform specific scaling variable.

PluginToPicture(FileName,PictureName,Scale)
PluginFromPicture(FileName,PictureName)

Assign a picture to a cell using the PictureName.

CellPicture(SheetName,Col,Row,PictureName)

Chapter 4: Script Commands

4-58

This command can be handy to extract dozen or hundreds of control images from a single image.

PictureCopy(PictureName,X,Y,Width,Height,NewPicture)

This command returns the Width and Height of a picture into the named variables.

PictureSize(PictureName,Width,Height)

This command will scale a picture to NewWidth and NewHeight, thus changing the original picture.

PictureScale(PictureName,NewWidth,NewHeight)

This command will copy FrontPicture onto a BackPicture to create NewPicture. For example, it could
be used to add a logo in the top left corner of a user-supplied picture.

PictureToPicture(BackPicture,FrontPicture,X,Y,NewPicture)

This command presents the named picture in a titled dialog. It is ignored on iOS.

PictureShow(Title,Picture)

This command only exists on iOS and is ignored on other platforms. It can be used to take or access
pictures from the app. Source indicates where the picture is coming from and should be one of these
words, Camera, CameraRoll or PhotoLibrary.

PicturePick(Source,PictureName,Result)

Result is the name of a variable that will be SUCCESS or FAILED. If SUCCESS, the picture is stored
in memory and assigned PictureName. A script can then present the picture in a cell or save it to a
file in the Plugins folder.

This command creates a named picture in memory from a picture used in a form control. A fixed
PictureID is used to reference a form control picture. Once the picture is named, it can be used in a
cell control.

PictureName(PictureID,Picture)

Chapter 4: Script Commands

4-59

Form Controls
These commands are used to manipulate Form Controls from a script. Form controls mimic those
added to workbook sheets in Microsoft Excel. Use this command to make a form control visible or
invisible.

FormControlVisible(Name,State)

The Name field is used to identify the control. The State field can be TRUE or FALSE or a variable
holding that value. Form control data is loaded into screen controls when an ExcelRT file is opened.
When you change the visibility of a control, it is not instantly reflected on the screen.

To rebuild all screen controls to reflect changes made with a FormControlVisible or FormControlSet
command, use this command.

FormControlRefresh()

This command provides a low level means of poking in raw data from which Form Controls are
constructed. The Name field identifies the control. The ItemIndex field is an integer starting with 1
the data string you want to change. The Value field provides a string for that data. These parameters
can be literals or variable names that contain the actual data.

FormControlSet(Name,ItemIndex,Value)

To use this command, a programmer must determine the ItemIndex. Learning how to accomplish
that is best illustrated with an example. Using ExcelRT Builder, double-click on the Form Control Edit
tool, then select a control and click the Info button.

Chapter 4: Script Commands

4-60

The Shape Info dialog shows the raw data used to build a Form Control on the screen. In simple
terms, each line is a different ItemIndex. In this example, AlternativeText is index 1 and Left is at
index 13.

The format of raw shape data is not fully documented anywhere. ExcelRT does not use some of
these fields. This data comes from a converted Excel workbook so Microsoft’s Excel VBA
documentation may be helpful.

The AlternativeText field determines a button’s displayed name. Assuming the Name field of the
button is Button1, change the name on the screen to MyButton using these commands.

FormControlSet(Button1,1,MyButton)
FormControlRefresh()

Some fields in the raw data are more complex. For
example, the BottomRightCellTopLeftPos field
consists of 6 comma-separated parts.

Since commas are used to separate parameters in
an ExcelRT Script command, you cannot easily
supply this value. Instead, use ~ in place of each
comma.

The ControlFormat field consists of four sub fields
named Min, Max, LargeChange and SmallChange.
Although the FormControlSet command cannot be used to change the value of this raw control data,
remember to count this as just 1 item index when changing fields below it.

The FormControlSet command is not intended for a novice ExcelRT developer since one wrong
command can corrupt an ExcelRT file making it unreadable. Keep current backups of your work when
using this command.

Chapter 4: Script Commands

4-61

HTML Control
An HTML Control is a type of form control that can be added to a sheet. It can present an HTML file
or collection of files from the Plugin folder or from the Internet. Use it to present interactive or online
content in your workbook using Web technologies like HTML, CSS, Javascript or Java.

To display HTML based
content from the Plugins
folder, add a folder
holding your HTML files.
The main file must be
named index.html.

In the Form Control
dialog, notice the Control
Type is HTML and the
URL or Plugin field is the
name of that folder within
the Plugins folder.

Chapter 4: Script Commands

4-62

This example shows the live Google website displayed on a sheet of your workbook. Enter a URL
starting with http into the URL or Plugin field of the Form Control dialog.

Up to 5 HTML controls can be added to each sheet of a workbook. Position and size the HTML
control as needed at design time using ExcelRT Builder.

Use the FormControlVisible command to show or hide HTML controls from a script. The
FormControlSet command can even be used to change the URL or Folder name that determines the
displayed content.

For example, a Play Video button could be added to your workbook. When clicked an HTML control
is made visible on the sheet and a video from your website starts playing in the app. The button
could be renamed to Stop Video to hide the video.

ExcelRT Cloud supports the HTML control with content from the Internet using a URL. It also
supports content from the Plugins folder.

See ExcelRT Plugin section in the ExcelRT Builder chapter.

These commands are related to HTML controls and compressing or expanding plugins (typically for
an HTML control).

This command compresses FolderName in the Plugins folder to FolderName.excelrt_plugin.

PluginCompress(FolderName)

This command expands FolderName.excelrt_plugin to FolderName in the Plugins folder.

PluginExpand(FolderName)

This command generates a file from a tagged template in the Plugins folder. This command is
typically used to generate an index.html file containing data from workbook cells that can then be
displayed with HTML, CSS or Javascript and presented within an HTML control.

PluginTaggedTemplate(Template,Filename,Array,FolderName*)

Chapter 4: Script Commands

4-63

Template is the template file name, while Filename is the generated file created by replacing tagged
values with data from the array. Array can be a single Array name or multiple array names separated
by semicolons.

FolderName can reference a folder in the Plugins folder or a nested folder using Folder1:Folder2. If a
password-protected plugin is used that is never expanded within the Plugins folder, FolderName can
refer to the Plugin name such as Barchart.excelrt_plugin.

This command retrieves data from an HTML element named ExcelRTcopy within the HTML content
displayed in an HTML control. Array is the name of an array in ExcelRT that holds the data. Status is
a variable that returns TRUE or FALSE. Status is FALSE if the named array does not exist in a
visible HTML control on the current sheet.

HtmlViewerCopy(Array,Status)

After retrieving array data, the value of the HTML control is clear. Refer to the HTML Control section
in the ExcelRT Builder chapter for an example.

This command pastes text to the HTML content displayed within the named HTML control. Text is
assigned to the value of an element named HTMLpaste within the HTML content. ControlName is the
name of the HTML control in ExcelRT. Data is literal text or the name of a variable that holds the text.
Status is a variable that returns TRUE or FALSE. Status is FALSE if the named HTML control does
not exist on the current sheet.

HtmlViewerPaste(ControlName,Data,Status)

The HtmlViewerCopy and HtmlViewerPaste commands are not supported in ExcelRT Cloud and are
simply ignored. Refer to the HTML Control section in the ExcelRT Builder chapter for an example. A
compressed, protected or shared ExcelRT Plugin file can be used by an HTML control. Refer to the
ExcelRT Plugin section in the ExcelRT Builder chapter.

This command redraws HTML controls on the screen.

HtmlRedraw()

This command constructs an HTML page from data in the current CSV and stores it in a named
variable HtmlVar. If you use multiple CVS, use the CsvActive command to set the current Csv before
calling this command.

CsvToHTML(HtmlVar,Headers*,BoldFirstRow*,Margin*,Grid*,Align*,BGColor*)

Header is an optional parameter where TRUE adds a column and row header. BoldFirstRow is an
optional parameter where TRUE bolds text in first row. Margin is optional integer that adds space to
cells. Grid is optional parameter where TRUE shows grid lines. Align is optional parameter of left,
center or right. BGColor is optional background color of form rrggbb such as F2FBFF.

Chapter 4: Script Commands

4-64

Command Log
These commands are used to debug and optimize command scripts. When logging is turned on,
each processed command is assigned a timestamp and logged to the Commands.log text file in the
Plugins folder.

This command turns on logging and creates an empty Command.log file when the State parameter is
TRUE. If State is FALSE, logging is turned off, but the Command.Log file is not deleted.

CommandLog(State,VarList*)

VarList is an optional parameter that can be one or more variable names separated by semicolons.
Those variable names and values are included on the log line.

Sometimes you want to add markers to the log file so you can keep track of where you are in the
script. Logging must be on to use this command. This is also a handy way to output variable names
and values at just that spot in the script.

CommandMark(Marker,VarList*)

Here is an example:

CommandMark(Look Here,Name1;Name2)

 Sometimes you want to stop the script and present the Command.log file in a dialog. When you
dismiss the dialog, the script keeps running. You can of course view the Command.log file in the
Plugins folder from a plain text editor, but that is not convenient to do from iOS.

CommandShow()

Chapter 4: Script Commands

4-65

Arrays
An ExcelRT workbook may create, resize, access and delete arrays as needed. There are no limits
to how many arrays can be used by the workbook but only 10 arrays may exist at any one time.

Each array has a name, size and may contain any number of elements. An array element is
accessed with the notation ArrayName[Index] where Index is a literal integer like 1, 2 or 3 or a
variable name that holds the index. The first element of an array is at index 1 and the last element is
at an index given by the array size.

An array reference can be used for any ExcelRT command parameter where a variable name is
accepted. Array commands can simplify and reduce the number of commands in your script. More
importantly, they are exponentially faster than loops they typically replace.

Before you can use an array you must create it. This command creates an array named ArrayName
with ArraySize elements that are given a Default initial value. Default is a literal string or Variable
name holding a value. If that named array already exists, it is sized smaller or bigger. If sized bigger,
then existing values are retained and new value are given the Default value.

ArrayDefine(ArrayName,ArraySize,Default)

This command deletes the named array.

ArrayDelete(ArrayName)

This command returns the array size into the variable named ResultVar.

ArraySize(ArrayName,ResultVar)

This command assigns the Value (literal or Variable value) to the array element at Index (literal or
Variable value) in ArrayName. If ArrayName does not exist or Index is less than 1 or greater than its
Size then ignore command.

ArraySet(ArrayName,Index,Value)

This command copies the indexed array value into ResultVar.

ArrayGet(ArrayName,Index,ResultVar)

Chapter 4: Script Commands

4-66

This command creates or resizes a named array. The size is based on the number of cells in
CellRange, the value of the Option parameter and the data in each cell. Data from the referenced
workbook cells is copied into the array elements.

CellRange examples include A1:A100 or SheetX!B1:C50 both of which create a 100 element array.
The Option parameter must be ALL or NOEMPTY. If ALL option is used, then array elements are
created from empty cells.

ArrayLoad(ArrayName,CellRange,Option)

This command will store array values into CellRange. If array size is smaller then cell count, some
cells are not copied to. If array size is larger than cell count, some array values are not saved to the
workbook.

ArraySave(ArrayName,CellRange)

This command will call the named Sub for each element of the array. IndexVar is the name of a
variable that contains the index value of that loop iteration. ValueVar is the name of a variable that
contains the array element value.

WhileArray(ArrayName,IndexVar,ValueVar,Sub)

ExcelRT has a collection of commands to manage a delimited list of strings. Some features are
easier to implement with a list and some with an array. This command will create a named list from
the elements of an array. This is similar to a Join command in other programming languages.

ArrayToList(ArrayName,ListName,Delimiter)

This command will create an array from a named list. This is similar to an Explode command in other
programming languages.

ArrayFromList(ArrayName,ListName,Delimiter)

This command will search an array for an exact matching Value and return the 0 or the found index in
IndexVar.

ArrayFind(ArrayName,Value,IndexVar)

This command will add a new array element containing Value.

ArrayAdd(ArrayName,Value)

Chapter 4: Script Commands

4-67

Cloud License
These commands are primary used to access the Cloud License system within a Standalone iOS or
Android app. If your iOS and Android solution runs within the ExcelRT host application or you are
building a desktop application, you can probably ignore this section.

Assume you are building a Standalone App for iOS or Android. When a Standalone App is launched
from a custom icon on the device, it opens directly into the Open Data File screen. There is no
separate download or activation process required.

Within your ExcelRT workbook, you may want to enable additional features using a Serial Activation
process configured with CloudLicense. The commands discussed in this section show how to
accomplish that.

Using AddLicense, present the Cloud License dialog to configure a license that matches with a
license configured in your Safe Activation account. Set the iOS and Android checkboxes to indicate
which platforms the license applies to. Set the No License checkbox to indicate that the license is not
applied within the Product view when testing your file in ExcelRT. The Run file for your App contains
this data.

Use this command to activate or validate the license. This command is usually assigned to a button
in your ExcelRT file. The first time a user clicks it, an Activation dialog is presented where the user
can enter a purchased Serial Number.

CloudLicense()

Use this command to present a License Options screen where the user can view their Serial Number,
release a license or perform other license maintenance activities.

CloudLicenseOptions()

Your ExcelRT file can determine if a license has been activated using the CloudLicenseStatus
symbol, then show invisible sheets or take other actions. In the same script below, the license status
is displayed when the ExcelRT file is opened.

OnOpen=SymbolValue(Status,CloudLicenseStatus)}MsgBox(Status)

Once a license has been activated, other symbols can provide valuable information about your
activated license.

RequestNumber, SerialNumber, VendorID, Features, ProductID

Chapter 4: Script Commands

4-68

Progress
These commands are used to show a progress screen during long scripting operations. At a
minimum, use ProgressShow before starting the long operation and ProgressHide after it is
completed to remove the progress screen.

Use this command to present a progress screen containing a title and message. The ShowBar and
ShowWheel parameters can be TRUE or FALSE to include an optional progress bar and progress
wheel. The optional Msg2 parameter adds additional text at the bottom of the screen.

ProgressShow(Title,Msg1,ShowBar*,ShowWheel*,Msg2*)

Use this command repeatedly while the progress screen is active to update the text and progress bar
value. The BarValue parameter is a value from 0 to 100.

ProgressUpdate(Msg1,BarValue*,Msg2*)

Use this command to hide the progress screen.

ProcessHide()

This command shows or hides a tiny spinning progress wheel at the top right corner of the ExcelRT
window. The State parameters can be TRUE or FALSE.

ProgressWheel(State)

This command shows or hides a short progress label at the top right corner of the window. The State
parameters can be TRUE or FALSE. The Title may be a named variable or literal text like 29 % or
1/9.

ProgressLabel(State,Title)

Chapter 4: Script Commands

4-69

Switch Rows and Columns
These commands are used to switch rows and columns or a range of cells within those rows or
columns. This allows a script to insert rows, remove rows or move cell data within a portion of the
row up or down or the column left or right.

All cell properties are moved, not just the cell value. That includes color, font, formulas, etc. These
commands are often used together with the SelectedRow and SelectColumn symbols. When a user
clicks a button to trigger your script, your script can determine the currently selected row and column
and act accordingly.

SwitchRows(SheetName,FromRow,ToRow,Redraw)
SwitchRowsRange(SheetName,FromRow,ToRow,FromCol,ToCol,Redraw)
SwitchColumns(SheetName,FromCol,ToCol,Redraw)
SwitchColumnsRange(SheetName,FromCol,ToCol,FromRow,ToRow,Redraw)

The Redraw parameter is TRUE or FALSE and indicates if the screen should be redrawn. When
calling these commands in a loop, you might want to wait until the loop is finished then use a
Redraw() command to optimize the speed.

Use this command to change the selected column or row:

SelectCell(Col,Row)

Chapter 4: Script Commands

4-70

Sound
To create an audio beep, use:

Beep()

To speak, use:

Speak(Hello World)

This command plays an audio file from the Plugins folder. Folder is an optional folder name within the
Plugins folder. Over a dozen file formats are supported depend on the OS. Formats include .m4a,
.mp3, .wav, .aac, .ac3, .aiff and .flac.

PluginAudioPlay(FileName,Folder*)

This command stops an audio file if currently playing. This command is not currently supported on
ExcelRT Cloud.

PluginAudioStop()

This command sets the volume level of an audio file from 0 (mute) to 100 (normal). This command is
not currently supported on ExcelRT Cloud.

PluginAudioVolume(Level)

This command plays an instrument with specified Pitch and Velocity for the specified number of
milliseconds. Instrument is an integer from 1 to 128. Use 0 for the Instrument parameter to present a
dialog showing all instrument names.

NotePlayer(Instrument,Pitch,Velocity,MilliSeconds)

Pitch is integer 0 to 127 where middle C is 60. Incrementing by 1 raises pitch by a half step. Velocity
is an integer up to 127 representing a very hard key press.

This command is supported on Mac computers using QuickTime and on Windows using the MIDI
functions. The NotePlayer command is ignored on ExcelRT Cloud.

Chapter 4: Script Commands

4-71

Python
Python is a programming language used by millions of developers. Python can be installed on
macOS, Windows or Linux computers. All macOS computers have Python preinstalled.

This command will run a Python script stored in the Plugins folder giving it the Input parameters and
storing the results in the Output parameter.

Python(Script,Input,Output,Timeout*,Executable*,FolderPath*)

The optional Timeout parameter in seconds will limit the amount of time ExcelRT will wait for
completion, otherwise it defaults to 1 second. Executable is an optional symbol to launch Python that
is almost always left empty. When empty it defaults to python unless python 3 has been installed on
Mac when it defaults to python3. FolderPath is an optional folder path if the Script file does not reside
in the Plugins folder. Here is an example that runs script.py.

Python(script.py,InputVar,OutputVar)

This command is supported in a macOS or Windows desktop application and may require the user to
install Python on their computer. To use Python from any desktop application or ExcelRT Cloud with
no user requirements to install Python, see the PythonServer command in ExcelRT Vendor
Commands.

JSON
JSON is a lightweight data interchange format. It is often used to communicate structured data to an
Internet source. It also provides a convenient way to collect data queried from a database or stored
in a formatted text string.

The formatting rules for JSON are simple with good online tutorials. Each piece of data is stored in a
key/value pair as represented here. Notice the first key is FirstName with a value of John. The
second key is LastName with a value of Doe. Each key and value is enclosed within double quotes
and separated with a colon. Multiple key/value pairs are separated with a comma and nested within
curly braces that designate an object.

{“FirstName”:”John”,”LastName”:”Doe”}

Another concept is an array where multiple objects are nested within brackets and separated with
commas.

[{“FirstName”:”John”,”LastName”:”Doe”},{“FirstName”:”Jane”,”LastName”:”Smith”}]

In this example, John Doe is in the first array element and Jane Smith is in the second element.

Script commands can be used to read or write a JSON object from a string or get and set data within
that JSON object. This command creates a JSON object from a string formatted with JSON data.

JsonFromString(StrVar)

This command stores a JSON object into a string contained in a named variable.

JsonToString(StrVar)

Chapter 4: Script Commands

4-72

These commands load a JSON object from a string, then save that object to a different string called
Json2.

DefineVar(Json1, {“FirstName”:”John”,”LastName”:”Doe”})
JsonFromString(Json1)
JsonToString(Json2)

This command extracts a value from JSON object based on the Indexer parameter. ResultVar is a
variable name that contains SUCCESS or FAILED. Indexer consists of a string of integer indexes or
names separated by periods.

JsonGetValue(Indexer,ValueVar,ResultVar)

For example, the first script command retrieves the name John into a variable named FirstName and
the second command retrieves Doe into a variable named LastName.

JsonGetValue(FirstName,FirstName,ResultVar)
JsonGetValue(LastName,LastName,ResultVar)

This command puts a value into a JSON object based on the Indexer parameter. ResultVar is a
variable name that contains SUCCESS or FAILED. Indexer consists of a string of integer indexes or
names separated by periods.

JsonSetValue(Indexer,ValueVar,ResultVar)

For example, assume the JSON object contains the name John Doe. This command will change it to
John Smith.

JsonSetValue(LastName,Smith,ResultVar)

Assume you have loaded a JSON object with an array of first and last name pairs. Use the indexer
parameter to specify the second element of the array and retrieve the FirstName field. With the
correct indexer string, retrieve any data value from any JSON object.

JsonGetValue(2.FirstName,FirstName,ResultVar)

This command extracts an array of values from JSON object based on the Indexer parameter.
ResultVar is a variable name that contains SUCCESS or FAILED. Indexer consists of a string of
integer indexes or names separated by periods.

JsonGetArray(Indexer,ArrayVar,ResultVar)

Assume a JSON object contains an array where each element is an object with FirstName and
LastName key/value pairs. This command returns the FirstName of each object in the array into
MyArray. The first part of the indexer string identifies the array within the JSON object, while that last
part identifies the key of the object from which to retrieve a value.

JsonGetArray(FirstName,MyArray,ResultVar)

This command puts an array of values into a JSON object based on the Indexer parameter.
ResultVar is a variable name that contains SUCCESS or FAILED. Indexer consists of a string of
integer indexes or names separated by periods.

JsonSetArray(Indexer,ArrayVar,ResultVar)

Chapter 4: Script Commands

4-73

The indexer parameter for the JsonGetArray and JsonSetArray commands can access a range of
objects within the JSON object. For example, assume the JSON object looks like this.

[{“F”:”John”,”L”:”Doe”},{“F”:”Jane”,”L”:”Doe”},{“F”:”Sue”,”L”:”Smith”},{“F”:”Cindy”,”L”:”Gray”}]

Assume we want to get the first name Jane and Sue into a two element array. This special indexer
would do it.

JsonGetArray(F.from2to3,MyArray,ResultVar)

The F part of the indexer string indicates you want the first name from each of object of the array.
The fromXtoY construct indicates that you want the Xth object to the Y object from the array starting
with an index of 1.

Assume the JSON object has many nested arrays and objects. This indexer indicates an array of
Duck objects at the Animal.Bird.Duck level. Perhaps the array contains many characteristics of 100
different species of Ducks. From this array, we want to access objects 5 through 9 and copy the
Species name into a 5-element array.

Animal.Bird.Duck.Species.from5..9

An indexer is almost always used to retrieve values from key/value pairs. In special cases, you might
want to retrieve the key name itself. In this example, the key names F and L are retrieved from the
first element of the array.

JsonGetArray(keys,MyKeys,ResultVar)

Assume the JSON object has this data. Note the data is not an array, but instead a single object with
multiple key/value pairs.

{“First”:”Tim”,”Last:”Gray”,”Age”:”27”,”Weight”:”160”,”Job”:”Carpenter”,”State”:”NY”}

Use this command to retrieve an array containing First, Last, Age, Weight, Job and State.

 JsonGetArray(keys,MyKeys,ResultVar)

This revised indexer returns the key names First, Last and Age into an array named MyKeys.

 JsonGetArray(keys1to3,MyKeys,ResultVar)

Assume you want to retrieve the values Tim, Gray, 27… from the Json object. Use this indexer
convention.

JsonGetArray(node,MyKeys,ResultVar)

To retrieve only the first and last name, use this indexer value:

JsonGetArray(node1to2,MyKeys,ResultVar)

Chapter 4: Script Commands

4-74

Database
ExcelRT can access a database with Open Database Connectivity (ODBC) script commands. ODBC
is an international standard supported by most database vendors. With a few script commands,
ExcelRT can read or write data in the database or present it in cells of a sheet.

ODBC gives your ExcelRT app access to MS Access, Visual FoxPro, FileMaker, Firebird, SQL
Server, Oracle and others. You can even connect to a Microsoft Excel workbook although technically
it is not a database. In Excel, each sheet is treated as a separate table where the column names in
the first row are treated as fields of that table.

To access a database you will need an ODBC driver for that database that matches the 32-bit or 64-
bit architecture of ExcelRT. The current build of ExcelRT on Windows is 32-bit and on macOS it is
64-bit. Most Windows computers include several preinstalled drivers. Some applications like
Microsoft Office may add additional drivers. Free or low cost drivers can be downloaded and installed
from the database vendor or third party software developers.

On Windows, there is a control panel that lists available drivers and allows a user to connect to a
database by defining a DataSource name.

c:\Windows\SysWow64\odbcad32.exe

This command shows how to launch the control panel on Windows when the use clicks a button.

Button1=RunWinAppFromPath(“c:\Windows\SysWow64\odbcad32.exe”)

Chapter 4: Script Commands

4-75

Apple no longer includes ODBC drivers with newer 64-bit builds of macOS. Third party developers
like actualtech.com and openlinksw.com offer free or low cost solutions.

From either Mac or Windows, install an ODBC driver and add a DataSource string that allows the
ExcelRT workbook to connect to that database.

This command connects to an ODBC database connection using DataSource and returns status in a
variable named in ResultVar. The DataSource is a literal or variable containing the DataSource name
already defined in the ODBC Admin app on Mac or Windows

DBconnect(DataSource,ResultVar,ExtendedSchema*)

ExtendedSchema is an optional parameter that can be TRUE or FALSE. Use FALSE for some
databases and TRUE others. The results of the DBtables command may depend on the state of the
ExtendedSchema parameter.

This command connects to an ODBC database connection using a set of credentials and returns
connection status in a variable named in ResultVar. ExtendedSchema is an optional parameter that
can be TRUE or FALSE.

DBconnectCredentials(DataSource,Host,Username,Database,Password,
ResultVar,ExtendedSchema*)

This command executes an SQL statement on the connected database. Use this command if the
statement returns no output. The status is returned in a variable named in ResultVar.

One or more optional variable names can provide data that replaces a ? in the statement. The first ?
is replaced with data from the first Var, the second ? with data from the send Var, etc.

DBexecuteSQL(Statement,ResultVar,Var1*,Var2*...)

Here is an example:

DBexecuteSQL(update customer set city=? where ZipCode=?,Result,City,Zip)

This command executes an SQL statement on the connected database. Use this command if the
statement returns data into a RowSet from which specific data can be later extracted.

Some databases only allow the RowSet to be used with one extraction command. You must run the
SQL command again to call another command using that RowSet.

Chapter 4: Script Commands

4-76

The status is returned in a variable named in ResultVar. One or more optional variable names can
provide data that replaces a ? in the statement. The first ? is replaced with data from the first Var, the
second ? with data from the send Var, etc.

DBselectSQL(Statement,ResultVar,Var1*,Var2*...)

This command returns an Array of values from the specified column starting at index 1 in the active
RowSet. The RowSet was previously created with a DBselectSQL command.

DBarrayRowSetColumn(Col,ArrayVar,ResultVar)

This command returns an Array of values from the specified row starting at index 1 in the active
RowSet. The RowSet was previously created with a DBselectSQL command.

DBarrayRowSetRow(Row,ArrayVar,ResultVar)

This command returns the number of columns and rows in the active RowSet.

DBsizeRowSet(Columns,Rows,ResultVar)

This command stores the active RowSet into a JSON formatted string. A JSON formatted string can
be stored in a JSON object. The JSON object can be accessed, modified or used by other
commands. It returns SUCCESS or FAILED into a results variable.

DBjsonRowSet(StrVar,ResultVar)

This command returns an array of table names. The ExtendedSchema parameter in the DBconnect
field may affect the results of the DBtables command.

DBtables(ArrayVar,ResultVar)

This command begins a transaction that can later be committed or rolled back. Some DB drivers do
not support this command.

DBbeginTransaction(ResultVar)

This command commits a transaction. Some DB drivers do not support this command.

DBcommitTransaction(ResultVar)

This command rolls back a transaction. Some DB drivers do not support this command.

DBrollbackTransaction(ResultVar)

This command adds a row of data to the Table of a connected database. The ColumnList parameter
provides a semicolon-separated list of column names. The status is returned in a variable named in
ResultVar.

One or parameters provide the column values as a literal or variable name. Some ODBC database
drivers are read only or may not support this command.

DBrowAdd(TableName,ColumnList,ResultVar,Col1*,Col2*...)

This command closes an open ODBC database connection and returns the status in ResultVar.

DBclose(ResultVar)

Chapter 4: Script Commands

4-77

Chapter 4: Script Commands

4-78

This command stores the active RowSet into a CSV structure. It returns SUCCESS or FAILED into a
results variable.

DBcsvRowSet(CsvNumber,ResultVar)

This command stores the active RowSet into a sheet. It returns SUCCESS or FAILED into a results
variable. Use TRUE in the optional Header parameter to include empty row at the top to later add
column headers.

DBsheetRowSet(SheetID,ResultVar,Header*)

Chapter

5

Deploy ExcelRT

Once your Excel workbook as been converted and refined to work well in ExcelRT,
you have several options for distributing it to users as a free or commercial
application.

• Unprotected XML File – Distribute unprotected XML File. Instruct users
to download ExcelRT from www.excelsoftware.com to use your file.

• Protected ERT File – Save a protected ERT file by purchasing a Serial

Number for ExcelRT. Distribute ExcelRT with your file or instruct users to
download ExcelRT from www.excelsoftware.com.

• Standalone App – Generate a protected Mac or Windows application with

an optional splash screen, license agreement, custom user interface, custom
icon and any type of Trial, Product, Try/Buy or Subscription license
applied. ExcelRT can be distributed within your application so no separate
install process is required.

• No License – Distribute an unlicensed, shared app on any platform without

configuring Cloud License or requiring an activation server.

Chapter 5: Deploy ExcelRT

5-1

http://www.excelsoftware.com/
http://www.excelsoftware.com/

Generate ERT File
ExcelRT supports two file types, .xml and .ert. The .xml file is an XML formatted
text file that can be opened and examined by a developer using either a text editor or
with commands like Cell Edit on the ExcelRT File menu. The .ert file is an
encrypted file that hides internal workbook data from a user.

ExcelRT is free for any user to download and use on any supported computer or
device. Anyone can distribute XML files royalty-free.

If you want to protect distributed files, choose the Save Encrypted command from
the File menu in ExcelRT. You will need to purchase a Serial Number for ExcelRT
from Excel Software. That Serial Number grants to you unlimited distribution rights
for any ERT files that you create.

Save Encrypted ERT File From XML File

To try your own .ert file on your own computer prior to purchasing a Serial Number,
set the Evaluation radio button in the Save Encrypted Document dialog. Set the
Mobile/Web Compatible checkbox to create an ERT file that can be used in a
desktop or Cloud app.

Before distributing your workbook to customers, you may want to hide gridlines
between cells or column and row headings or scrollbars. Use the Workbook
Properties dialog in ExcelRT Builder to customize each sheet. Invisible sheets show
up in ExcelRT as an unnamed tab that cannot be selected. Move invisible sheets in
your Excel workbook to the right of visible sheets.

Use the Hide ERT Sheet Tabs if No Ribbon checkout to hide the sheet selector. This
can be useful if you already provide navigation buttons on your sheets.

Chapter 5: Deploy ExcelRT

5-2

Standalone App
QuickLicense or AppProtect is used to deliver your workbook
as a protected application that can be licensed to a specific
computer.

QuickLicense supports many license types including time-
limited trial, product, try/buy, subscription or floating licenses.
QuickLicense supports many activation processes including manual offline, online
Serial Number activation and USB dongle activation when generating your own
dongles with MakeDongle.

Manual Activation for Protected Application

QuickLicense can optionally be used with the Safe Activation service to automate
online Serial Number activation. The vendor distributes a Serial Number to each
customer during the purchase process that controls how many computers the
application can be activated on.

Online Serial Number Activation

Chapter 5: Deploy ExcelRT

5-3

The QuickLicense product includes the QuickLicense tool to define the license and
generate a Ticket file. Use the AddLicense wrapping tool to generate a protected
Mac or Windows application from an ERT and Ticket file.

The setup process gives a developer many optional features
including a configurable Open Data File interface window,
splash screen, pre-activation license agreement and a custom
application icon.

Excel workbooks are often client or project oriented. The user creates a different
copy of the workbook to store unique data about one of their clients or projects.
AddLicense implements an optional Open Data File window that gives your app a
powerful user interface for this type of application.

Optional Open Data File Interface Window

Chapter 5: Deploy ExcelRT

5-4

The ExcelRT Options dialog controls the user interface presented by your protected
application.

Customize the User Interface of Protected Application

ExcelRT on Customer Computer
ExcelRT can either be installed first as a separate application on the Customer
computer or together with your application. When installed separately, it must be
installed to its default location.

• Mac - /Applications/ExcelRT
• Windows – c:\Program Files (x86)\Excel Software\ExcelRT

Excel Software recommends that you direct your customer to our ExcelRT installer
or supply them with our installer file.

www.excelsoftware.com/excelrt-download

Mac Application Embed ExcelRT

On Mac, AddLicense can embed ExcelRT in the application bundle.

Chapter 5: Deploy ExcelRT

5-5

http://www.excelsoftware.com/excelrt-download

Mac or Windows Application

Alternatively, on Mac the ExcelRT folder that contains the ExcelRT.app can be
included in the same folder that holds your application. On Windows you can also
distribute the ExcelRT folder and its nested files in the same folder as your
application.

For example, create a folder named Product (or give it your product name). Inside
that folder put Product.exe (Windows) or Product.app (Mac) and the entire folder of
ExcelRT files. Now zip the Product folder and put it on your website for download,
on dropbox or send it to a customer as an email attachment. The ExcelRT folder
must contain a Plugins folder with full read/write access for all user accounts.

Product
…Product.exe
…ExcelRT

Keep in mind that some email systems prevent you from sending or receiving some
file types including .exe or .zip files. Giving a download URL to your customer is
usually the best solution for distributing your finished product.

When your customer receives a zip file on Mac it is automatically unzipped into
their Downloads folder. On Windows, they can Right click on the file and choose
the Extract All command from the popup menu.

Your application can be installed on a customer computer with a Setup app created
by a separate tool. On Mac, see ClickInstall from Excel Software to construct a
professional Setup app.

ExcelRT Folder Location

When your Mac application is launched, it first looks for ExcelRT embedded in the
application bundle, next it looks in the folder holding your application and finally it
looks in the default location.

When your Windows application is launched, it first looks in the folder holding your
application and if not found it then looks in the default location.

When distributing ExcelRT inside your Product folder, ExcelRT can generally be
stored anywhere on the customer computer. The ExcelRT folder contains a Plugins
folder that may need read/write access from the user account running your
application. If your workbook uses scripting commands that write data to the
Plugins folder, then the user account must have read/write access to files in the
Plugins folder. A safe place to store your Products folder is inside the Documents
folder on the Mac or Windows computer.

Chapter 5: Deploy ExcelRT

5-6

Activate Standalone App
When a user launches your protected application for the first time, an activation
process occurs on the user computer.

For a manual activation process, an Activation dialog is presented that collects an
Activation Code. The user gives you a Request Number shown in the dialog, you
enter it into QuickLicense and give them the computer unique Activation Code
needed to activate the app on their computer.

For an online activation process, you give the user a Serial Number at the time of
purchase. The user enters the Serial Number into the presented Activation dialog
and clicks the Activate Now button to complete the activation process.

Refer to Tutorial 1 or Tutorial 2 included with QuickLicense for step-by-step
instructions on how to configure a license with manual or online activation.

As a developer, it is important to understand what happens during the activation
process on the user computer. Regardless of the QuickLicense configured license
type and activation process, a shared Ticket folder is created if it does not exist.

• On Windows: c:\users\public\ticket
• On MacOS: /users/shared/ticket

Two files are generated in the Ticket folder, the active Ticket file and a Build file
that you’ll recognize because it contains your application name and a long number.

Once activated, the user is not prompted with the Activation dialog on future
application launches. During the development process you may want to present the
Activation dialog again for testing or to create screen shots for user documentation.

For a simple product license that allows reactivation, simply delete the Ticket and
Build file from the shared Ticket folder. Now launch the application to see the
Activation dialog again. For a time-limited dialog that does not allow reactivation,
refer to the manual reset process in the QuickLicense User Guide.

The activation process also creates a folder on the user computer that holds data
files. If the Open Data File window is used, a new file is created in this folder each
time the user clicks the New or Clone button.

Chapter 5: Deploy ExcelRT

5-7

Assume the app is named TravelCalc.exe on Windows or TravelCalc.app on
Mac. These files contain the user-entered data, so they may want to keep backups.

• On Windows: c:\users\public\TravelCalc
• On MacOS: /users/shared/TravelCalc

The master copy of your ERT file is also stored in this folder, but it may not be
visible and it isn’t shown in the Open Data File window. The New button in that
window simply makes a named copy of the master file.

Update Standalone App
Assume you have been selling your protected ExcelRT product to customers. You
have an installed base of users that have created many files of user-entered data.

Assume you have created a new ExcelRT file with major improvements that you
want to make available to your existing customers.

Within AddLicense, set the Retain Activation dialog. This allows an existing
customer to switch to your new application without requiring them to activate again.

Present the ExcelRT Options dialog. Learn about and enable the Update button.
Upload your new ERT file to your website and enter its URL into the Update URL
field of the ExcelRT Options dialog. Now build the new EXE or APP.

New users can download the new EXE or APP file like before. Existing user can
optionally download the new EXE or APP file, but they will also need to click the
Update button. This replaces the master ERT file on their computer with the file
stored on your website.

If you already had the Update process setup in your original application, then
existing user will simple click the Update button. There is no need to download the
application again.

If you don’t have a website, instruct the user to drag your newly supplied ERT file to
the appropriate folder on their computer.

Chapter 5: Deploy ExcelRT

5-8

Deploy Plugin Files
On Mac or Windows, a human or installer program can add files to the ExcelRT
Plugins folder. To simplify the user experience, this section describes how to deploy
Plugin files with a Standalone application.

Standalone ExcelRT App
Set the Embed Static Files checkbox in AddLicense. Add a nested folder within the
Source folder that holds the ERT file and includes all required Plugin files. Choose
the ERT file with the Select button to the right of the Application field.

On first launch of a standalone Mac or Windows application, the Plugin files will be
extracted from the application and added to the appropriate Plugins folder. If
ExcelRT is located in the same folder as the application itself, files are added to the
Plugins folder also in the same folder as the application itself.

If your standalone application does not include its own copy of ExcelRT, then
ensure the user installs ExcelRT to the default location before they install your
application. Here is the default location of ExcelRT.

• Windows – c:\Program Files (x86)\Excel Software\ExcelRT
• Mac - /applications/ExcelRT

If your application has already been installed and you later build a new application
that includes additional Plugin files, you may need to force a new activation on the
User’s computer.

Ask the user to launch the application while the Shift, Control and Command keys
are pressed. The Apply New License dialog is presented. Click Yes to dismiss the
dialog. Now launch again without the keys pressed and perform a new activation.

Alternatively, instruct the user to delete the Ticket and all Build files for your
application from the shared ticket folder location before reinstalling.

• Windows – c:\users\public\ticket
• Mac - /users/shared/ticket

Chapter 5: Deploy ExcelRT

5-9

Screen Size and Orientation
In Design mode, ExcelRT has a Simulated Target Screen dialog that allows your
workbook to be viewed on different screen sizes and orientations. This feature
is intended for future use when designing or testing mobile Apps.

View Workbook Sheets on Different Screen Sizes

The Pixel Width and Height field value will determine the Window size that
controls the viewable drawing surface within the window.

Use the Customize panel to add your own device names and calibrated pixel
values. This dialog allows you to use any Mac or Windows computer for a
screen simulation of any current or future target hardware.

If your sheets are designed for a specific window size even when running on
desktop computers, then leave the Simulated Target checkbox set when creating
and ERT file. This presents your workbook within a non-resizable window on
desktop computers.

Chapter 5: Deploy ExcelRT

5-10

Purchase Button
A Purchase button can be added to the Open Data File interface window. Set a
checkbox in the ExcelRT Options dialog in AddLicense when building a
standalone or shared product. The Purchase button presents a dialog that
allows a user to make InApp purchases with a Credit Card or Paypal account.

All information presented by the Purchase dialog is configured from the
Purchase Button Edit page accessed from the Vendor Info page on a Safe
Activation Service 3 account.

Purchase Dialog Presented from Open Data File Dialog

A Purchase button is only available for a license created with QuickLicense.
When configuring that license, you will identify the Product ID in Safe
Activation associated with that license. You’ll need that Product ID to
configure the Purchase process within Safe Activation.

The process used to configure a Purchase dialog is demonstrated in several
videos. Alternatively, a Purchase button can be linked to a page on your own
website that is presented to the user in their default web browser.

Chapter 5: Deploy ExcelRT

5-11

Chapter

6

Charts

ExcelRT supports a suite of dynamic charts to present a table of data in a graphically
pleasing format. Most of the familiar chart types from Microsoft Excel are
supported with flexible style and customization options.

The data to build a chart comes from a range of cells. A chart is configured as a
form control. A chart can be presented on any sheet with the underlying data
coming from the same or a different sheet. When the underlying data charges, the
chart is updated.

Within ExcelRT Builder, click the Form Control tool on a sheet, choose Chart as the
Control Type and select the Chart Type from a popup menu.

Chapter 6: Charts

6-1

Click the Edit button to select the range of cells and select the chart style.
The Cell Range dialog is used to choose the original range of cells displayed in the
chart. This dialog is only presented if a cell range has not already been defined.

For most chart types, you will choose a range that includes the Column and Row
headers as illustrated above with range A2:G10. If the sheet includes a table name,
you can include that row in the range. Typically the table name will appear centered
in a merged row of cells.

After setting a cell range, the Chart Editor dialog is presented. The Data panel of
this dialog determines what cells of data are used to build the chart. One or more
series of data values are derived from the data range. The Style panel offers a quick
way to choose a predefined chart appearance, while the Components panel allows
individual parts of the chart to be customized. Use the Preview panel to see the
affects of changes in the Data, Components and Style panels.

Chapter 6: Tutorial

6-2

The style of a chart is constructed from several parts. The chart type (Column, Bar,
Area, Pie, Stacked Area, Stacked Column and Scatter) determines the content of the
Plot area while the Style for a specific chart type determines the size, orientation or
visibility of other parts.

Chapter 6: Charts

6-3

Chart Types
Specify a range of data values in a sheet and select an appropriate chart type. The
chart type is the first and most important decision when constructing a chart.

Chart type determines how data is presented in the Plot area of a chart. This range
of data will be presented in various chart types below.

This Column chart type shows three series of data values (January, February and
March) for each run (Boggle, Codenames and Exploding Kittens). With the Chart
Editor dialog, a designer can change the horizontal and vertical axis with a button
click.

The Bar chart type is similar, except the bars
are horizontal. A Line chart uses lines instead
of columns to show values.

Chapter 6: Tutorial

6-4

An Area chart uses a different color for each Series of data drawn with some
transparency so the user can see each overlapping area.

This type of chart works best with a small amount of
data.

A Pie chart displays a single series of data points. It also
works best with a small amount of data that highlights
the proportion each part contributes to the whole.

A Stacked Column chart adjusts the vertical axis to the
sum of each run in the series of data points.

A Stacked Area chart shows the sum of each run on the vertical axis and a stacked
set of areas.

Chapter 6: Charts

6-5

A Scatter chart is different than most chart types. It starts with one or more X and Y
pairs in the range of data. In this example, the first two columns presents X and Y
values for the first series of points, while the next two columns create the second
series of points and so on.

The Scatter chart determines the appropriate Vertical and Horizontal axis values
based on the plotted data. It shows each point as a round or rectangular dot.

Chapter 6: Tutorial

6-6

Chart Styles
Based on the selected chart type, the Styles panel of the Chart Editor shows
predefined styles.

Click each icon on the Style panel and select the Preview panel to see your live
chart. Once you have a good starting point, you can customize the chart with
options on the Data and Components panel.

After customizing a chart style, you might want to name and save it so that custom
style can later be applied to a different range of data to construct a new chart. Click
the Assign button and the Custom Chart Style dialog is presented to name your
custom style.

Custom chart styles are saved in a preference file (named ExcelRT.ini) associated
with ExcelRT Builder. Most ExcelRT developers use AppProtect or QuickLicense
to wrap the finished ExcelRT workbook into an App. A preference file for each tool
is stored in the same folder location.

Use custom styles on any project by simply clicking on a named Custom Style icon
in the Styles panel of the Chart Editor. You can also Copy and Paste style data as
clipboard text between charts within the same or in different ExcelRT files.

Chapter 6: Charts

6-7

Chart Components
Dozens of options are available to configure each part of a chart. A predefined style
sets all the options with one click. The chart type determines the content of the Plot
area while the style determines the size, orientation and visibility of other parts like
the Title, Vertical and Horizontal Axis, etc.

Each part of a chart is positioned based on the X and Y percentage on the
Components panel with the Width and Height also defined as a percentage. These
parameters are integer numbers from 0 to 100. Some parts are unchecked if the style
doesn’t display that part.

Text for the Vertical and Horizontal Title fields come from the Vertical Title and
Horizontal Title fields on the Data panel. That field can include the actual text or a
cell reference of the form Sheet2!H8 that contains the actual text.

Text drawn in each part of a chart will use a specified Font, Size, Color, Alignment
and bold or plain style. If the local computer does not have the specified font
installed, it will use the system font.

To set the color of a property, click on the color box and choose a color from the
present color wheel. The RGB representation of that color is shown as text next to
the displayed color box. It is often easier to copy and paste the RGB text
representation to ensure exact colors for different parts.

Chapter 6: Tutorial

6-8

The color field for Chart Background, Plot Background and Legend Background can
be empty for a transparent affect where the underlying sheet image is visible.
Specify a color in the Chart Background field for an opaque presentation.

A chart may include a picture drawn on top of the other parts that is positioned and
sized with the X, Y, Width and Height fields. Set the Background checkbox to use
the picture as a background image. The Transparency field determines if the picture
is opaque or somewhat transparent. Together with a Chart Background color, a
variety of affects can be achieved.

Some chart types like column and bar charts use bars to represent data values. Bar
properties affect the shape, color and width of bars and space between each bar. The
meaning of these parameters can vary based on chart type.

Some chart types allow data labels to be placed within the Plot area of the chart.

When drawing columns, bars or areas in the Plot portion of a chart, the color of each
series is defined on the Data panel. The designer can select each Series in the dialog
and individually assign a color. Alternatively, choose a command on the Default
Colors popup menu to assign a color theme to all series items.

Many chart types allow a grid within the Plot area. Use the Gridline properties on
the Data panel to affect the color, weight and line styles of the grid.

Chart Dimensions
The data values presented in a chart will dynamically affect the chart dimensions.
When constructing a chart, the Plot area is constructed first based on the number of
rows and columns of data and the assigned bar properties. The other parts of the
chart are then proportionately sized based on the percentage indicated in the Width
and Height properties of that part.

The Orientation field on the Data panel allows a designer to provide guidance during
the chart building process to minimize the affects of stretching or compressing text.
Once the chart is constructed into a picture, that image is displayed on the sheet
based on the Control Fit parameter.

There are many variables that affect the presentation of a chart. If names in a legend
are too long or the specified text size is too large, the text may get clipped off or not
be displayed at all. Some adjustments may be required to the position, width and
height of the Legend part for a nice presentation.

Chapter 6: Charts

6-9

Chart Data
The data for a chart comes from cells in a sheet. By default, the initial cell range
specified by the designer determines how many series and runs of data are displayed.
Invisible rows or columns in the chart range can be displayed or hidden based on the
Hidden rows/cols checkbox on the Data panel of the Chart Editor.

The Switch Row/Column button switches the cell values used to create a series and
used to create a run within that series. That concept is easier to see then explain by
simply clicking the button and looking at the Preview panel.

Use the Up and Down buttons to change the order of each series of data in the chart.
Add or remove a series of data with the + and – buttons.

Data for a chart typically comes from a contiguous range of cells on one sheet, but
that is not a requirement. In an unusual situation, a designer might add a series of
data using a range of cells from a different sheet.

Given all of the configurable options for where data comes from and how it is
presented, it is possible to create an invalid chart. If that happens, the chart image
displays Bad Chart Setup in a rectangular box. During design, an invalid cell
reference could cause an exception in ExcelRT when it attempts to draw the chart.

Build and Use Charts
A chart is a type of form control that is added, deleted,
moved or resize with the form control tools in the
ExcelRT Builder ribbon.

Select the Control Add Delete tool and click on a sheet to add a control, then select
type Chart. To delete an existing chart, hold down the Shift key and click on the
chart with that tool.

To edit an existing chart, click on it with the Control Edit tool. Alternatively, while
is ExcelRT Builder mode the designer can simply click on the chart with the arrow
cursor.

The Control Move Size tool is used to move the top left corner of a chart to a
different location on the sheet. The chart size can be set with the Width and Height
properties in the Form Control dialog. Alternatively, the displayed chart size can be
determined dynamically as a fixed percentage of the actual chart size that depends
on the amount of data and properties of the chart. See the Control Fit parameter on
the Data panel of the Chart Editor dialog.

Chapter 6: Tutorial

6-10

In the finished application, the designer may want to show a compressed image of
the full chart. The user of the finished application can click that smaller image to
present a full sized chart in a popup window. To enable this feature, set the Popup
Screen checkbox in the Form Control dialog.

Chapter 6: Charts

6-11

Chapter

7

ExcelRT Builder

ExcelRT Builder can be enabled on Mac or Windows by entering a Serial Number
for the ExcelRT Annual Subscription. The same ExcelRT installation used by a
customer can also serve as the Builder for a developer. A Serial Number allows the
Builder to be active on one computer at a time.

Launch ExcelRT and choose the License command from the File menu.

Activate ExcelRT Builder

After activation, quit and restart
ExcelRT. Notice the ExcelRT
Builder Open dialog is presented.

Click New to create a project,
click Select to choose an existing
XML file to add to your project
list or select a project from the list
and click Open.

Chapter 7: ExcelRT Builder

7-1

The New button in the ExcelRT Builder Open dialog presents the New Project
dialog. Use the Select button to locate the folder path where the project is stored.
Enter the project Filename that will automatically be saved with file extension XML.

Create a New Project

Select the number of sheets in the project, then select and rename each sheet as
desired. Select and change the number of Columns or Rows in each sheet, then
press Enter. Click OK to create and open the project.

ExcelRT Builder adds a toolbar at the top of the main window.

ExcelRT Builder Window

Chapter 7: ExcelRT Builder

7-2

Builder Tools
The Builder Toolbar contains all the tools needed to author an ExcelRT workbook
from which an application is generated.

 Open – Click to open a new project.

 Save – Click to save project changes.

 Print – Click to print.

 Simulated Screen - Click to view workbook on different screen sizes and
orientations when designing for mobile phones and tablets.

 Save Encrypted - Click to save the current XML project, then export to a new
ERT file. The ERT file is then opened with ExcelRT Builder features disabled.

 Recalculate Cells – Click to recalculate all cells on all sheets.

 Variables – Click to add, edit, view or delete Script variables.

 Script Edit – Click to present the Script Editor. Hold down the Shift key while
clicking to present a plain text editor.

 Script Run – Click to run script for a simulated button click.

 Sheet Add Delete – Click to add, delete or reorder sheets in the workbook. Be
careful when reordering sheets since Script commands that refer to a specific sheet
ID will no longer work and may crash ExcelRT.

 Workbook Properties – Show or hide sheet column and row headers,
scrollbars and gridlines. Rename sheets or make them Visible or Invisible. The
default window size of the workbook when initially opened can be set here.

 Sheet Size – Change the number of Columns and Rows on the current sheet.

Chapter 7: ExcelRT Builder

7-3

 Erase Cell Data – Select a Column and Row range for which to delete cell
properties. By default, all cell properties are selected for deletion. Selectively delete
specific cell properties by clearing checkboxes.

 Cell Size & Visibility – Change the Column Width, Row Height or visibility of
columns and rows.

 Cell Range Copy – Copy selected properties for a range of cells into the
clipboard.

 Cell Range Paste – Paste selected cell properties copied into clipboard to a
range of cells in the current sheet. Alternatively, generate sample text, integer or
number data into a range of cells.

 Cell Range Move – Click to move a cell range with related properties on the
current sheet.

 Cell Properties – Click to edit cell properties for a selected cell. If no cell is
selected, the Select Cell Properties dialog is presented to choose a range of cells for
which properties can be modified.

To unselect a selected cell, first click to the top left of the Row and Column header,
then click Cell Properties to present the Select Cell Properties dialog. Hold down
the Shift key while selecting the tool to suppress the Cell Properties dialog.

 Range – Click to add, edit, delete or view named ranges.

 Format Rules – Click to add, edit, delete or view formatting rules.

 Hyperlinks – Click to add, edit, delete or view Hyperlinks assigned to a range
of cells.

 Table Add Delete – Click to add, edit or delete tables within the project.
Tables overlay extra properties on a range of cells.

 Sheet Filter – Enable or disable a sheet filter for a range of cells on a sheet.

Chapter 7: ExcelRT Builder

7-4

 Control Add Delete – Click to select tool, then click on screen to add a Form
Control. The Add Form Control dialog is presented to define the control name, type,
width and height. To delete an existing control, hold down the Shift key while
clicking the tool on the existing control.

 Control Edit – Click to select tool, then click on an existing Form Control on
the screen to edit it. Double-click on the Control Edit tool to present the Form
Controls dialog to Add, Edit, Delete or view any form controls in the project.

 Control Move Resize – Click to select tool, then click in the top left quadrant
of an existing form control to get the Green Resize cursor. Click on the screen
position where you want the control to be top-left aligned. Click the tool in the
bottom right quadrant of a form control to resize it using a Red Resize cursor to
choose the bottom right position. Pictures cannot be resized using this process.

 Cell Control – Click to select tool, then click on any cell to create an inline cell
control. A cell control is drawn within a specific cell and provides an alternative to
form controls.

 Cell Borders – Click to select tool, then click on any cell to assign borders.

 Cell Validation – Click to select tool, then click on any cell to set entry
validation rules, input messages and alert messages.

 Cell Text Color – Click to change font, size, color, style and other text
properties of a cell.

 Cell Background – Click to change background color and pattern for a cell or
add an icon.

 Sheet Background Image – Click to add or remove an image used as a
background for the current sheet. Each sheet can have a different background image
or typically, no image at all.

Chapter 7: ExcelRT Builder

7-5

Formula – Edit the formula for the selected cell and press Enter to store that
formula in the cell. A formula begins with the = character.

[…] – Click to present a dialog used to edit a long formula.

Fx – Click to present a library of support Excel functions.
When a function is alphabetically located and selected, it
gets inserted into the formula edit field at the cursor location.

Rebuild Dependency – The Rebuild Dependency checkbox
is an unnamed checkbox to the right of the Formula selector.

When checked, all cell dependencies are recalculated whenever any formula is
changed. To improve editing performance in a large workbook, clear this checkbox
and choose the Build Dependency command from the File menu when all editing is
completed.

Cell Properties

 Click on a cell with the Cell
Properties tool to present the Cell
Properties dialog. This dialog
shows all the properties related to
a specific cell. The cell being
edited is displayed in the title of
the dialog.

It is often more convenient to edit
some of this data in other ways.
For example, text can be typed
directly into a cell on the screen.
The formula can be edited in the
Formula field at the top right of
the window. Cell color and
formatting is often assigned with
other tools.

When clicking the Cell Properties
tool, the Select Cell Properties
dialog is presented. This dialog
allows the developer to select a
range of cells and then edit most
of the cell properties within all cells in that range.

Chapter 7: ExcelRT Builder

7-6

Sheet Add Delete

 Present the Sheet Add & Delete dialog to add, delete or reorder sheets in the
workbook. A workbook may contain up to 15 sheets and each can be visible or not.

Click the Add button to add a new sheet. The sheet is given a default name. Click
the Properties button, then select and change the Sheet title.

If the Warning checkbox is set, you will be warned whenever reordering or deleting
sheets since that changes the index of a sheet. The sheet index might be referenced
from a Script command.

Sheet Size

 Present the Sheet Size dialog to change the
number of Columns and Rows in the current
sheet. When adding new columns or rows to a
sheet, all the new cells have no data or assigned
properties.

Chapter 7: ExcelRT Builder

7-7

Erase Cell Data

 Present the Erase Cell Data dialog
to remove all or selected cell data from
a range of cells.

When you erase Text Color you are
assigning it to default black and
erasing Bkgd Color sets it to white.

If Font and Size is checked, the default
font and size is applied.

Use the Cell Properties and Erase Cell Data dialogs over a range of cells to assign
the appropriate data to each cell.

Cell Size & Visibility
 Change the Column Width, Row

Height or visibility of columns and
rows.

To assign a specific Cell Type to a
range of cells, select the starting and
ending column and row. Set the Cell
Type checkbox and choose a Cell
Type from the popup menu.

Format Rules
 Click to add, edit,

delete or view formatting
rules in the Format Rules
dialog.

A formatting rule consists
of a complex collection or
raw data that is displayed if
the Rule Name is
unchecked or if you click the Info button for a selected rule.

Chapter 7: ExcelRT Builder

7-8

Use the Format Rule Edit dialog to add or edit a rule. Start by selecting the Rule
Type to customize the dialog to the fields needed to define that specific type of rule.

ExcelRT implements approximately the same set of formatting rules and options as
those implemented by Microsoft Excel.

Databar Formatting Rule Setup

Control Add Delete
 Click to select tool, then click on the

screen to add a Form Control. Form
controls are used in Microsoft Excel to add
push buttons, checkboxes and radio
buttons to a sheet. The Add Form Control
dialog is presented to define the control
name, type, width and height.

Based on the selected control type,
additional fields will be presented in the dialog. For some control types, you may
need to edit additional parameters by presenting the Control Edit dialog for the
newly created control.

Chapter 7: ExcelRT Builder

7-9

Control Edit
 Click on a form control with the Control Edit tool to present the Form Control

dialog. The fields in the dialog will depend on the selected control type. The next
most important selection is the Placement field.

If Placement is Free Floating, the Shape Top and Left fields determine the location
of the top left corner of the control on the selected sheet. The Width and Height
fields determine the control size. A developer will typically use the Control Move
Resize tool to indirectly affect these fields.

If Placement is Move or Move And Size, the control is aligned to the top of a
specified row and left side of a specified column plus offsets from that location.
Move And Size placement links the control size to the width and height of cells
between the Top Left and Bottom Right reference cells.

A picture added to a Microsoft Excel document is also treated as a form control
within ExcelRT. While a picture uses the same type of placement and positioning
data as other form controls, the picture itself is stored separately from the control.

A Picture control refers to a Resource ID that holds the picture. The same picture
can be used for multiple controls and scaled as needed to reduce size and optimize
performance. Pictures are discussed later in this chapter.

Chapter 7: ExcelRT Builder

7-10

Double-click on the Control Edit tool in the Toolbar to present the Form Controls
dialog to Add, Edit, Delete or view any form controls in the project.

Controls are drawn on a sheet based on the top down order of controls in the Form
Controls dialog. Use the Up and Down arrow button in the dialog to reorder
controls if needed.

Pictures
The Pictures button presents a
dialog to add, delete or modify
pictures. Notice how each picture
has a fixed Resource ID that a
form control can reference.

The Width and Height of a picture
determines how large it is on the
screen for a form control with
Free Floating or Move placement.

The Byte Size of a picture is very
important since it affects the size
and performance of every ExcelRT file created by your application. To resize or
clip a picture, first change the Width and Height fields, then click the Resize Picture
or Clip Picture buttons.

Chapter 7: ExcelRT Builder

7-11

Cell Control
 Unlike Form Controls that have a

Microsoft Excel equivalent, Cell
Controls are unique to ExcelRT.

Each cell control turns the cell itself
into a control. Similar types of
controls are supported including push
buttons, checkboxes, radio buttons and
popup menus.

Cell controls are often easier for a
developer to manage since the cell itself determines the position and visibility.

When a user clicks a cell control, that action
often triggers a script to run. A typical script
command is shown in blue for each control
type.

When a cell control is type Picture, a button is
visible to present the Cell Control Pictures
dialog. Pictures for cell controls are not read or
written in the ExcelRT file itself, but rather
loaded into memory at runtime using a Script
command. The same picture can be used in
many cells.

Cell control pictures typically come from an
image file in the Plugins folder or from the
Internet. These images often provided by the workbook user rather than the
designer.

There is also a Script command to create a cell control picture from a form control
picture that is stored in the ExcelRT file.

Chapter 7: ExcelRT Builder

7-12

Table Add Delete
 Click to present the Table Data dialog to add, edit or delete tables within the

project. Tables overlay extra properties on a range of cells.

To add or edit the properties of a specific table, present the Table Definition dialog.
Select the sheet where the table resides. Select a style and give it a name.

Select the Cell Range of the table. For most tables, other ranges can be calculated
for you automatically based on other options you select. Set checkboxes to
determine if the table has headers or other characteristics. Use the popup menu to
determine if the last row or column has a specific or custom formula applied.

Chapter 7: ExcelRT Builder

7-13

Cell Borders
 Click to present the Cell Borders dialog. After assigning borders to the selected

cell, those cell borders can be copied and pasted to other cells using the Copy and
Paste button.

Cell Validation
 Click to present the Cell Validation dialog. Assign validation rules, input

messages and alert messages and actions. After assigning validation rules to the
selected cell, those rules can be copied and pasted to other cells using the Copy and
Paste button.

Chapter 7: ExcelRT Builder

7-14

Cell Text Color
 Click to present the Cell Text Color dialog. Change font, size, color, style and

other text properties of a cell. The From Column and Row and To Column and Row
fields show the selected cell. Text properties can be applied to a range of cells.

Cell Background
 Click to present the Cell Background dialog. Use this dialog to apply a

background color, pattern or icon to the selected cell or a range of cells.

Chapter 7: ExcelRT Builder

7-15

Cell Copy & Paste
 Click to copy a range of cell

properties from the current sheet. Copied
data can be pasted on other sheets or
workbooks.

Only checked properties are copied. The
Value is the actual data entered into the
cell. A cell Formula or Dependency can
be copied, but may need to be adjusted
once copied into its new location.

The Build Dependency command from
the File menu to recalculates the
dependencies of all cells in the
workbook.

 Click to paste a range of
copied cell properties into the
current sheet.

Paste Cell Range
In addition to clipboard data, other
types of data can be pasted into a
range of cells.

Set the Value radio button and enter a
specific value to be pasted into each
cell of the range. For testing purpose,
create random integer, float or string
data to be pasted into each cell.

The Repeat Row Adjusted Formula
option can apply the same formula to a
range of cells and adjust the row
references. In the example shown, on
row 3 the pasted formula is adjusted to =A3*B3+2-(A22 – 2)

Chapter 7: ExcelRT Builder

7-16

Sheet Filter
 Click to enable or disable a Filter on the current sheet. A filter is used to sort

and organize data and is similar to a simplified table.

Merged Cells
ExcelRT supports the Excel concept of
merged cells. Multiple cells can be treated
as one combined cell for user editing and
display.

To implement this in ExcelRT Builder, put the cell range into the Merge Area field
of every cell in that merged cell range. If the area consists of A2:C2, then put this
text in the Merge Area field of cells A1, B1 and C1. If all cells in the range don’t
include the area, ExcelRT will not display the merged cell as expected.

When clicking in a merged cell range with the Cell Properties tool, the top left cell is
selected within the Cell Properties dialog regardless of which cell you click on in
that range. To edit the properties of a specific cell, click to the left of the Column A
header to present the Select Cell Properties dialog. Select a specific column and
row, then click OK.

The Value of the top left cell is what actually gets displayed on the screen or edited
by the user. The Values of all other cells in that range are ignored.

Chapter 7: ExcelRT Builder

7-17

HTML Control
The Control Add, Delete, Edit and Move tools can be used to define one or more
HTML Viewer controls on each sheet of the workbook. The displayed content may
be offline from the Plugin
folder or live from the
Internet.

An HTML Control can
display a folder of HTML
related files from the Plugins
folder. The HTML content
may consist of hundreds of
files and nested folders
control HTML, CSS and
Javascript files.

Chapter 7: ExcelRT Builder

7-18

HTML based technologies can be an integral part of the ExcelRT workbook.
Scripting commands can show, hide or change the content displayed within HTML
Viewer controls. Workbook data can drive the HTML content or calculated
Javascript results can be returned to the
workbook.

Below is an example of a BarChart driven by
workbook data. The shaded cells are user
editable data that is read into an array with a
script command, then sent to a file in the
Plugins folder to be displayed in the HTML
viewer as a dynamic bar chart.

The HTML Viewer control is displaying the index.html file. When a user clicks the
Update button, this script runs.

UpdateBarchart3Btn=ArrayLoad(BarChart3,B1:B9,ALL)|PluginTaggedTemplate(template.ht
ml,index.html,BarChart3,BarChart3)

Data from cells B1:B9 is read into an array named BarChart3. The
PluginTaggedTemplate command generated index.html from template.html by
replacing array tags with data. For example, the value of B1 is used as a header in
the chart. That value is read into the first element of the array, that used to replace
BarChart3[1] in the template.html file before generating index.html.

Chapter 7: ExcelRT Builder

7-19

To recap, start with HTML content that can be displayed in an HTML Viewer
control. Clone the index.html file (or any text file) to a template file and added array
tags. Now add a few lines of text to define the array values and call the
PluginTaggedTemplate command. The script can be called from a button or an
event like switching sheets.

Data can be copied and pasted between the workbook and HTML environments.
This sheet contains two HTML controls illustrated as HTML Area 1 and 2. When
the Data to ExcelRT button is clicked, the value of the ExcelRTcopy element is set.

When the user clicks the ReadHTML1 button, the follow script command run and
copy data from the ExcelRTcopy element with the HTML environment to cells B1
and B2 within the workbook.

ReadHtml1Btn=HtmlViewerCopy(Array1,StatusVar)|ArraySave(Array1,B1:B2)

Chapter 7: ExcelRT Builder

7-20

The OnHTMLViewer event, can further automate this process as illustrated with this
script code. The format of the ExcelRTcopy element is array name, equal plus each
array element value separated by semicolon.

OnHtmlViewer[Array1]=HtmlViewerCopy(Array1,Stat)|ArraySave(Array1,B1:B2)|Redraw()

This HtmlViewerCopy command uses clipboard copy in the native OS where the
ExcelRT workbook is running. For security, modern browsers require that the
HTML element being copied is visible and entered by the user or set by a Javascript
action triggers by a user button click. The size of the HTML element can be
minimized.

The HtmlViewerPaste command assigns data from the workbook to an element in
the HTML environment. Despite the name, this command is not actually using the
clipboard. The HTML viewer is directly changing the value of an element within
the HTML page.

Assume the user types data into B5 and clicks the SendHTML1 button. These script
commands run and modify the value of the ExcelRTpaste element in the HTML.

SendHTML1=VarFromCell(Data,B5)|HtmlViewerPaste(HTML1,Data,StatusVar)

An HTML control can get it source from a script variable. In the Form Control
dialog, enter Var=VarName into the URL or Plugin field as illustrated below for a
variable named MyHtml. To demonstrate, use the CsvToHtml command to build the
HTML page from a loaded CSV file.

Var=MyHtml

An HTML control uses local browser technology from the computer or device it is
running on. Some HTML constructs are rendered different or not at all on some
browsers or devices.

Chapter 7: ExcelRT Builder

7-21

ExcelRT Plugin
For convenience and distribution, ExcelRT provides a command to compress a
folder of files nested within the Plugins folder into a single Plugin file. To use those
files, an expand command restores the original folder of files.

Use the ExcelRT Plugins command on the Files menu to present the ExcelRT
Plugins dialog. Use the Compress button to create a Plugin from a selected folder
in the Plugins folder. The Expand button restores a folder from a selected Plugin
file.

Chapter 7: ExcelRT Builder

7-22

See the PluginCompress and
PlugExpand script commands
to compress and expand
plugins within a running
ExcelRT workbook.

Although Plugins are
typically used to distribute
HTML content, they can be used for other purposes.

Plugins can be encrypted with a password. Only users with the encryption password
can expand the Plugin to see or change the original source files within the Plugin.

A password-encrypted plugin can be used within an ExcelRT workbook without
expanding the plugin to its source files or without knowing the encryption password.
The HTML control on ExcelRT sheet refers to the plugin name XXX.excelrt_plugin.

If an ExcelRT plugin stored in the Plugins folder is not password encrypted, it will
automatically expand into the Plugins folder on first use of the workbook. If the
plugin is password encrypted, it runs within a virtual environment. If the plugin is
very large, maintaining this virtual environment may slow down the workbook.

If the PluginTaggedTemplate feature is used with a password-encrypted plugin, the
FolderName parameter is the actual plugin name as illustrated here.

PluginTaggedTemplate(template.html,index.html,BarChar,BarChart.excelrt_plugin)

Using an ExcelRT Plugin within an ExcelRT Cloud account has special significance.
For example, a single copy of a plugin file can be shared across all user accounts and
provide a private virtual instance to each specific account as needed. Refer to the
ExcelRT Plugin section of the ExcelRT Cloud chapter.

Chapter

8

ExcelRT Cloud

ExcelRT Cloud allows ExcelRT workbook applications to be run from a web
browser on virtually any computer or device. The ExcelRT file is developed and
tested on a Mac or Windows computer, then uploaded into a Vendor account in
ExcelRT Cloud.

An ExcelRT Cloud based application runs
in a browser with similar capabilities to an
App running on a local computer. Users
can navigate between workbooks, between
sheets of a workbook, enter data, import or
export files, present dialogs, share data
between workbooks or interact with
Internet websites.

ExcelRT Cloud is a monthly service that provides a developer with a fully managed
ExcelRT Cloud server. The Vendor and Users log in from a web browser.

Base on the account size, the ExcelRT Cloud server can support multiple
applications and many users.

ExcelRT Cloud can optionally be linked to a Safe Activation account to manage an
automated order, Serial Number delivery and account creation process. An ExcelRT
Cloud account can be linked to a Cloud Sharing account to share files with other
Cloud or Desktop Apps.

Chapter 8: ExcelRT Cloud

8-1

Define Apps
A developer can log into their Vendor account to define Apps and Users. To log
into a Vendor account, type Vendor in the application field, your 6-digit ExcelRT
Cloud Vendor ID in the User field and your password.

The main screen consists of a scrolling App and User list. Each user can be assigned
to one or more Apps.

To define an App, click the Add button above the App List to enter data and upload
a completed ExcelRT file. The minimum data required to define an App consists of
the App Name, an uploaded ERT file, that file name in the Master Workbook field
and the Open Password.

Chapter 8: ExcelRT Cloud

8-2

Define Users
To define a User, click the Add button above the User List. Each user has a unique
Contact name they must enter into the User field when logging into a specific App.
Each user account is given a default password that can be changed from the Vendor
account or by the user after they log into their account.

The User dialog shows a list of available App names that can be assigned to that user
by selecting the App name and clicking the Yes or No button.

User Experience
A user logs into a specific App within their account, by entering the App name, their
User name and password. When the App is configured, the vendor determines if the
user logs directly into the ExcelRT workbook or presents a File Manager screen as
illustrated here.

The user can create, rename, clone or delete a list of workbook files using buttons in
the File Manager screen. To open a specific workbook file, select it and click the
Open button.

Chapter 8: ExcelRT Cloud

8-3

ExcelRT Cloud maintains a folder for each App and User combination where
workbook files are stored. Those files are backed up daily so the user can restore
their account if needed or change their password using buttons at the top right edge
of the window.

Chapter 8: ExcelRT Cloud

8-4

Once a user is in the workbook, it functions almost exactly the same as it does when
running as a desktop App. Click on a cell and type to enter data. Click buttons to
present dialogs for data entry. Select a sheet name at the top to switch to a different
workbook sheet.

When editing data in a workbook, click the Save button at the top left to save it to
disk. The App can optionally be configured to Auto-Save when closing the
workbook. One difference between a Cloud and Desktop App is that if you leave
the computer, after a period of time your session will automatically close. Likewise,
if you loose Internet access, your session will close.

Custom File Manager
To present the File Manager screen for an App, set the File Manager checkbox when
defining the App. If unchecked, the App opens directly into the workbook. The
App is always presented within one browser screen. Modal dialogs may be
presented within that window.

To include a Support button in the File Manager screen, enter a URL in the Support
field when defining the App. That button takes the user to a support page on your
website in a separate browser panel.

To include a Purchase button, enter a URL in the Purchase field when defining the
App. That button takes the user to a Purchase page on your website in a separate
browser panel where they can buy Serial Numbers for other products you sell.

The Feedback button presents a dialog that collects developer-configured
information from the user and logs it to the Vendor account. The vendor can review
time-stamped feedback logs from users running the various Apps they offer.

The Cloud button presents a dialog linked to a Cloud Sharing account. The user can
upload and download files or switch to a different Cloud Sharing account.

The Setting button presents a dialog that collects developer-configured data from the
user. That data is stored in a Settings.data file in the user’s application folder. The
data is easily accessible to any workbook on open using a script command.
Common information like Name, Company, Address or Phone need only be entered
or modified once by the user and then included in each workbook.

Chapter 8: ExcelRT Cloud

8-5

Settings
To configure a Settings button for an App, select the App and click the Settings
button in the ExcelRT Vendor account. Use the Setting Template dialog to define
the labels and field type of each data field collected from the user.

In this example, the First Name, Last
Name, Company and Phone fields are
text edit fields. The Customer Type
field is a set of Radio buttons with
names Reseller, Affiliate, Company
and Individual. Other supported field
types include Section, Checkbox,
Popup and ComboBox.

To add a field to the Settings
dialog, click the Add button
and complete the presented
dialog.

When the user clicks the
Settings button within your
App, a dialog collects data
from the user and stores it in
a file that your application
can easily retrieve.

Chapter 8: ExcelRT Cloud

8-6

Feedback
To collect feedback from users,
enter a label in the Feedback field
when defining the App in the
ExcelRT Vendor account.

An App user can provide
feedback to the developer by
clicking the Feedback button in
the File Manager window.

From the ExcelRT Vendor
account, click the Feedback button to present the Feedback Reader dialog. Each
time stamped feedback file contains the Date, App and User. Click the Delete
button to delete the file begin viewed. To edit the file, simply type typing and then
click the Save button to save your changes.

When viewing feedback from a specific user, click the Goto User button to present
the User dialog for the person providing the feedback. Type text into the Notify
field to notify. Perhaps a bug was field or you need to request additional
information.

A user with a Notify message is highlighted within the Vendor account so that
notification can later be cleared.

Chapter 8: ExcelRT Cloud

8-7

Cloud Sharing
To support Cloud Sharing in your
Apps, set options in the App Edit
dialog within an ExcelRT Vendor
account.

Set the Cloud Sharing checkbox to include the Cloud button in the file manager
screen. To allow lookup of Cloud Sharing credentials based on a Serial Number
received during the purchase process, set the Serial Number Lookup checkbox and
enter your Cloud Vendor ID. Use the Default Accounts button to provide one or
more Cloud Sharing accounts of
your own for use by customers.

Refer to the Cloud Sharing User
Guide for a complete description
of the setup process and user
experience.

When a user clicks the Cloud
button, the Cloud Sharing dialog
is presented. The user can
Upload, Download or Delete files
from their account. The user can
assign or switch between multiple
Cloud Sharing accounts.

An ExcelRT workbook can
present the Cloud Viewer dialog
with a CloudViewer script
command.

This dialog is a portal to specified
file types in a Cloud Sharing
account. Select My Account
radio button to upload from or
download to the Plugin folder of
the ExcelRT Cloud account.

Select My Device to upload from
or download to the local disk of the device. The downloaded file is stored in the
Downloads folder of a computer. On an iPad, the file is retrieved and displayed
allowing the user to touch the image for additional sharing options.

Chapter 8: ExcelRT Cloud

8-8

User Notify and Alert
The ExcelRT Vendor account has several features to help you manage user accounts.
For example, assume that you manage user accounts and notice that a user’s credit
card has expired.

To present a notification message when a
user logs into their account, select that
user row and click the Edit button. Type
info the Notify field as shown below
then click OK. The Notify column of
that row is highlight with Yes in red.

Each time the user logs in to use your
application, they see the Notify message
in a dialog. Once the credit card info has
been updated, clear the Notify message
from the User edit dialog.

The Alert checkbox in the User dialog is
another way to mark a customer for special attention. Notice the User ID of that row
is highlighted in red. When using an automated Paypal Subscription button and
Serial Number in Safe Activation, an Alert can automatically be set when a
subscription is cancelled by the user or is allowed to expire.

If a user wants to permanently cancel their subscription, present the User dialog,
select the application and click the No button. Be careful, this action deletes the
user account and all application related files created by that user.

Chapter 8: ExcelRT Cloud

8-9

Batch User
Click the Batch button in the ExcelRT Vendor account to manipulate a batch of user
accounts. The Import and Export button allows user accounts to be imported or
exported from CSV (comma separated value) formatted text

The Export button downloads a CSV formatted text. It gives you the option to a
new tab in the browser with that data. Data can be copied and pasted into another
application like Microsoft Excel. Notice the first line consists of a comma separated
header row. Each additional row contains the information for one user account.

Chapter 8: ExcelRT Cloud

8-10

The Import button accepts CSV formatted data from a text file into the ExcelRT
Vendor account. Notice there is no header row, just one line of comma-separated
data for each user account that you want to add.

The list of fields for each account include account, password, email, notes and Apps
where the Apps field can be multiple App names separated by |.

User accounts are typically added manually by a developer as customers subscribe to
Apps they provide or though an automated purchase process using a Serial Number
driven approach with the Safe Activation service.

Use the Add button to create a batch of accounts that will be distributed to existing
users or through some other type of shopping cart or automated purchase process.
With this approach, the account name is a unique number (same as the User ID)
created in sequential order plus an assigned random number password. After
creating the batch of user accounts, export the data for distribution to customers.
After logging into their account, each user can change their password.

Use the Delete button to delete a range of user accounts based on the User ID.

Chapter 8: ExcelRT Cloud

8-11

Plugin Folder
Information in this section applies to more advanced workbook applications that use
script commands.

Every user account has a Plugin folder. If the user account is assigned to multiple
Apps, they all share the same Plugin folder. Apps can read and write files to the
Plugin folder using simple script commands. Data can also be shared between
different Apps using the Plugin folder.

The Plugin folder provides disk storage for images or csv data files. For example,
assume your App includes a button that downloads a current data file from your
website to the Plugin folder, then uses that data to populate fields within the
workbook. The data only needs to be downloaded once and can then be shared
across all workbook files in that user account.

Some apps include additional image or data files that only need to be stored once in
the Plugin folder for each user account. This can reduce the file size of a workbook
so it opens and saves faster. This also provides a mechanism where the developer
can provide updated information or user specific information as need.

A developer uploads Plugin files using the Upload section of the App Edit screen.

Uploaded files for an App can be copied into the Plugin folder for each newly
created user account. Select the App from the Vendor screen and click the Plugins
button to present the Plugin Files dialog. Select a file that should be copied to each
Plugin folder, then click the Copy Yes button to mark that row as Yes.

Chapter 8: ExcelRT Cloud

8-12

Files that need to be read, but never changed by individual user accounts should
always be marked as Shared. When a file is marked as Shared, it can be accessed
with script commands as if it was stored in the local Plugin folder for that account.
Storage space is dramatically reduced since only one copy of the file exists on the
server. That also makes an update to the file much easier for the vendor.

After marking a file as Shared (or not Shared), the vendor must Stop and Start the
ExcelRT Cloud server from the ExcelRT Control Panel for that change to take affect
in user accounts.

To copy a selected file to the Plugin folder for a specific user account, enter the User
ID in the edit field and click the Copy To User ID button. If you want that file
renamed after it is copied into the Plugin folder, enter the new name in the Renamed
To field before clicking the button.

To delete a file uploaded when the App was originally defined, select it and click the
Delete button. To copy a selected file into every user account to which that App is
assigned, click the Copy To All Users button.

App users don’t need to understand the concept of the Plugin folder nor do they have
a direct mechanism to view or alter the contents of that folder. An App can provide
buttons and script commands to move files to and from the Plugin folder.

When debugging an App, it can be useful for a developer to see the contents of the
Plugin folder for a specific user account. Select the user in the User List of the
Vendor account and click the Plugins button to present the Plugin List dialog.

Each file in the Plugin folder of that user account is shown with the modification
date and size. To delete a file, select it and click the Delete button.

Chapter 8: ExcelRT Cloud

8-13

Update an App
Most Apps consist of an ERT file (master workbook) uploaded by the developer
when the App is defined. The developer may later fix bugs or add enhancements to
the master workbook and want to upgrade existing users to the new workbook.

If an App uses the File Manager, the New button copies the master workbook to the
App folder for that user account and names it. After making improvements to the
master workbook, the developer can simply upload the new ERT using the Add Edit
dialog. If the user clicks New in the File Manager, a copy of the new master
workbook is created. Existing named workbooks are unaffected.

If changes to the new master workbook are such that some users may want to
upgrade and other may not, then create a new App with a slightly different name.
For example, if the first app was called TravelCalc, perhaps the next major release is
called TravelCalc2.

The developer must assign the new App to each user account that needs to run it. To
log in, the user will type TravelCalc or TravelCalc2 in the App field. This approach
can be used to provide a Beta version of a new App to a limited number of users.

If the App does not use the File Manager, the master workbook is copied into each
newly created user account. Each time a user runs the App, the same file is opened
and saved. Uploading a new master workbook has no affect on existing users.

To replace the master workbook in existing user accounts when no File Manager is
used, select the App from the Vendor screen and click the Plugins button. Now
click the Replace Master for Assigned Users button.

Chapter 8: ExcelRT Cloud

8-14

Custom Login
By default, a generic Login screen is
presented to all users regardless of the
App they purchased. The URL for the
Login screen takes the form shown
below.

https://excelrt.cloud:9005

The number at the end of the URL is a port number that will be unique for each
developer’s ExcelRT Cloud account.

The Title, Image and default App name on the Login screen can be customized by
defining the Login Title and Login Image fields in the App Edit dialog.

Upload an image with transparent background and enter the name of that image file
in the Login Image field such as AppIcon.png. You can upload a different image for
each App. In this example, the Application name field is defaulted to YourApp and
an App specific image and title is shown in the Login screen.

To apply the Login screen customization, provide the user with a custom URL of the
form below. Use your Port number, your Vendor number and your App Name.

https://excelrt.cloud:9005/?vendor=191201&app=YourApp

For multiple Apps, you can supply the Login Title and Image field in just one app.
Change the URL to use the logo field assigned to that App name as shown here.

https://excelrt.cloud:9005/?vendor=191201&logo=YourApp

You can share the same Title and Image on all of your apps, but still default the App
name field so the user can avoid typing it by using three parameters as shown here.

https://excelrt.cloud:9005/?vendor=191201&logo=YourApp&app=AppTwo

Chapter 8: ExcelRT Cloud

8-15

Browser & Device User Experience
ExcelRT Cloud supports Mac, Windows, Linux or ChromeBook computers, iOS or
Android phones or other mobile devices like iPad. Use browsers like Safari,
Chrome, Firefox or Edge. Since your App is mostly running in the Cloud, the user
experience is surprisingly similar despite these diverse environments.

A Vendor should test an App across each supported environment to account for
different screen sizes, supported technologies or browser interface differences. You
might choose to deliver an App as separate computer or mobile editions to best
accommodate screen, technology and user interface differences.

Screen size can be substantially different between computers, notepads or phones.
To accommodate iPad users, a developer can set the Sheet Select Width parameter
on the App Edit dialog so the top Sheet Selector is fully visible on the screen.

An ExcelRT app can use an HTML control that makes use of HTML, CSS,
Javascript and other HTML technologies. Since those technologies run on the client
side, capabilities can differ based on the browser or device where the App is
running.

ExcelRT supports audio using a variety of formats. Support for audio formats may
differ based on browser or client device.

One big difference between a computer or mobile device running an App is the
user’s ability to access files on that device. On a computer, the user can easily
access files on disk for import or export into the App. Since a mobile device gives
the user less access to files, file storage and sharing may depend more heavily on the
Plugin folder in the user account or on a Cloud Sharing account used by the App.

Some ExcelRT script commands allow a browser based App
to share files with Apps running on a mobile device. For
example, the CloudViewer script command presents a dialog
to upload images stored on an iPad or download and copy
those images to the Photos or Files app.

The FileSaveAsFromPlugin script command can be used to
download in image file from the Plugin folder. It presents a dialog with a Click Here
link. On a computer, the image is immediately stored in the Downloads folder. On
iPad, the downloaded image is displayed. The user can touch the image, then click
Save Image or Copy in the presented Popup menu. Save the image to Photos or
Paste it to the Files app.

Chapter 8: ExcelRT Cloud

8-16

ExcelRT Control Panel
An ExcelRT Cloud account is a process running on it’s own processor core on an
Internet server. That process services you the vendor when defining Apps and
Users. It also presents each of your Apps for all User accounts. As each user logs
into an App, memory is allocated to service that browser session.

ExcelRT provides a lot of power and freedom to the developer with a comprehensive
scripting environment. With that power, comes responsibility. A developer can
easily create a buggy script that crashes the application. When an ExcelRT Cloud
process crashes, all user accounts are disabled.

The developer should fully test an App before presenting it to users. To maximize
App availability, the ExcelRT Cloud process can be quickly restarted by the
developer or with an automated process.

Each ExcelRT Cloud account
comes with a Control Panel with
its own Login screen.

Enter your Vendor ID in the User
field and your account password
then click Login.

Chapter 8: ExcelRT Cloud

8-17

The Control Panel
screen shows a green
box when your
ExcelRT Cloud
process is running or a
red box when it is not
running.

The developer can
click the Start or Stop
button to run or kill the
process.

When clicking the Start or Stop button, it may take a few seconds for the box color
to change. When the developer starts the process, the Control Panel process itself
stays running even when you log out. It continually monitors your ExcelRT Cloud
process. If it quits for any reason, it quickly restarts the process.

A developer may want to briefly stop their ExcelRT Cloud process for a scheduled
upgrade or some other reason.

When a developers signs up for a new ExcelRT Cloud account, they get the current
build of ExcelRT. Over time, new features will be added to ExcelRT but your
running process and active users will be unaffected.

To use the new ExcelRT features, contact Excel Software to temporarily stop your
process, replace your build of ExcelRT Cloud and restart the process.

When logged into an ExcelRT Cloud Vendor account, click the Goto Control Panel
button to present the ExcelRT Control Panel login screen.

Secure and Unsecured Ports
An ExcelRT Cloud account is available from either a secure or unsecured port.
Notice the link to each Login screen on the Vendor Control Panel.

Most users are more comfortable logging into a secured port so that may be the only
Login URL that you will provide. With a secure port, communication is SSL
secured and the user sees the familiar paddle lock icon in most browsers.

Your application runs exactly the same from an unsecured port. For large sheets,
screen updates may be a bit faster. In the unlikely event that SSL security
mechanisms of the Internet are temporarily offline, your Apps can still be accessed
with an unsecured port.

Chapter 8: ExcelRT Cloud

8-18

ExcelRT Cloud Pricing
Each vendor must think through the business process and pricing for Apps running
in a Desktop, Mobile or Cloud environment. Each environment has inherent
differences that affect the development, distribution, support, license and price.

Development

The development process of an ExcelRT file is essentially the same regardless of the
target platform. For smaller Apps, the same workbook developed and tested on a
Mac or Windows computer can be distributed on any platform. Many scripting
commands work across platforms, but there are some platform unique
considerations.

Larger ExcelRT workbooks or those that require lots of data entry will perform
better as a Desktop application due to the dedicated CPU and RAM of a local
computer and potentially larger screen. Refer to the Design for Performance section
of the Develop ExcelRT chapter.

Distribution

To distribute a Desktop app, a standalone Mac, Windows or Linux application can
be created. The developer will likely create a Code Signed installer that installs the
App and ExcelRT runtime on the customer computer. For Mac, the installer can be
notarized with Apple for easily deployment on macOS Catalina. Refer to online
ClickInstall information and videos for Mac and Windows desktop apps.

Desktop Apps are generally purchased from the developer website, downloaded to a
local computer and then activated with an offline or Serial Number online activation
process.

An iOS App is likely purchased and downloaded from Apple’s App Store. For an
Android App, that process can occur from an App Store or directly from the
developer’s website.

Cloud Apps are typically provided as part of a larger service or product bundle or
purchased from the developer website. There is nothing to download and the user
can run from a wide range of browsers on computer or mobile devices.

Chapter 8: ExcelRT Cloud

8-19

Support

The support cost for a Desktop app is generally higher than that of a Mobile or
Cloud app since the runtime environment is more diverse.

Desktop users can have a diverse mix of Windows, Mac and Linux OS versions,
CPU and RAM capabilities. The OS is more configurable and users have greater
access to the software installed on their computer. That freedom gives the user the
ability to mess something up.

Many users install Virus scanners or enable firewalls on desktop computers that
affect their ability to download and run software. As a software vendor, you will
likely incur higher support costs to deal with these types of user issues and
questions.

Mobile Apps run in a more restricted, sandboxed environment. While initial
development cost is likely higher than Desktop apps, ongoing support costs may be
lower.

Cloud apps run in a browser. Most modern devices and computers should run your
App fine since almost all processing and storage requirements occur on the server.
ExcelRT Cloud or your App master workbook can be updated once on the server
and is instantly available to all users. Support costs for Cloud apps should be lower
than Desktop or Mobile apps.

License & Price

Desktop Apps are generally created with QuickLicense. For online Serial Number
activation, a Safe Activation account can be used. Safe Activation can also support
automated order processing, Serial Number delivery and license management.

Trial, Product and Subscription licenses are frequently used for desktop and mobile
Apps. The same product can be offered as a lifetime purchase or monthly
subscription. The same Serial Number in Safe Activation can be used for Desktop,
Mobile and Cloud apps.

For a desktop app, the developer generally keeps 100% of the revenue. For a mobile
distributed through an App store, the App Store by keep 30%. All iOS Apps are
distributed through Apple’s App Store so in addition to keeping a significant amount
of the developer revenue, Apple imposes restrictions on the App developer.

With a Cloud app, the burden of providing CPU and RAM shifts from the local
computer to the server. Most of the processing and memory requirements for a
Cloud app occur on the server. A significant amount of RAM is allocated to each
concurrent user session.

Chapter 8: ExcelRT Cloud

8-20

With a Cloud app, the Vendor is essentially providing a virtual computer for each
active user session. For example, when a user session loads a compressed 1 MB
workbook, 40 MBs of server RAM may be needed to support that session. RAM
requirements grow quickly with dozens or hundreds of concurrent users.

Since a Vendor must directly or indirectly pay for the server CPU and RAM cost,
the cost per user is higher for a Cloud app then for a Desktop or Mobile app. On the
flip side, the user gets similar App performance regardless of their local computer or
mobile device.

Since a vendor incurs an ongoing cost for each user account in the cloud, a time-
limited or Subscription license is more applicable than a lifetime license so the
recurring revenue matches the vendor’s ongoing cost. ExcelRT Cloud can be used
independently or linked to a Safe Activation account to manage licenses.

An ExcelRT Cloud account is priced as a scaleable monthly fee with no setup or
cancellation fees. The monthly fee is based on the number of Apps, Users and Max
file size allowed for each App workbook. The monthly cost largely reflects the cost
of server RAM and CPU required to support your App users.

Goals of an ExcelRT Cloud account:

• Limited upfront technical knowledge for setup
• Low startup cost or financial risk for new apps
• Short concept to delivery time for new apps
• Scaleable cost paid from growing customer revenue
• Low monthly cost for small Apps with many users
• Low monthly cost for large Apps with few users

Chapter 8: ExcelRT Cloud

8-21

Multiple Vendor Accounts
Each ExcelRT Cloud account has a Vendor ID. Every developer gets a different
Vendor ID. There are some situations where a developer may want multiple cloud
accounts for the purpose of improving user performance, lowering cost or ensuring
uptime of their Apps.

If a developer is building a simple App and then making it available to customers
with few changes thereafter, they will likely only need one ExcelRT Cloud account.

Assume for example, the developer has created an App and now has many active
users paying for a monthly Subscription. Perhaps the developer wants to create a
new App or make major enhancements to the existing App. It is safer to develop
and test new features, especially scripting commands using a separate Cloud
account.

Assume the production build of your released App is running in a 1 MB account
with thousands of user accounts. Assume you are developing a new version of that
App that requires a 2 or 3 MB account. To develop and test the new App, it would
cost less to get a separate account that supports larger files, but just a few users.

A developer can have multiple Cloud accounts using the same Vendor ID. Each
Cloud account has a different Port number in the login URL as illustrated here.

https://excelrt.cloud:9001
https://excelrt.cloud:9005

If a developer has multiple accounts with the same Vendor ID, you’ll need to
differentiate the specific account when logging into the Control Panel by including
the Vendor ID, a dash and the Port number as illustrated here:

200115-9003

Relocate Vendor Account
ExcelRT Cloud was designed to allow an entire Vendor account to be easily moved
from one Cloud account to another even if different servers are involved. Refer to
the Relocate Vendor Account section of the Vendor Control Panel screen. The
original and relocated accounts must use the same Vendor ID.

This feature paves the way for future flexibility. Perhaps in the future you want to
move your account to a different hosted server or even a self-hosted server. That
can be accomplished with a few clicks. In minutes, all Apps and User accounts are
running on a different server with a different URL.

Chapter 8: ExcelRT Cloud

8-22

Safe Activation
ExcelRT Cloud can be integrated with Safe Activation to manage user accounts.
When an order occurs, a Transaction can be created in Safe Activation that assigns a
Serial Number and delivers it to the customer in an email message. The customer
data can also be communicated to ExcelRT Cloud to create a user account.

If the Vendor or an automated process later suspends the Serial Number or clears the
Subscriber checkbox, that data can also be sent to ExcelRT Cloud. The associated
App can be unassigned on the user account or an Alert can be set so the Vendor can
take appropriate action.

A setup process is required in the Vendor account on both Safe Activation and
ExcelRT Cloud. Communicated data is retained if ExcelRT Cloud is offline when
the transaction occurs.

Create User Account
The licensing process within Safe Activation for Desktop, Mobile or Cloud app is
driven by Serial Numbers. During the purchase process, the customer is provided
with a Serial Number that can be used to activate a Desktop or Mobile app. The
same Serial Number can be used to control multiple Apps running on multiple
computers, devices or even in ExcelRT Cloud.

In an automated purchase process, a Transaction is created that assigns the Serial
Number to a customer. That process can send the order data to ExcelRT Cloud so a
user account can be automatically generated.

Here is the sequence of events:

1. Customer makes purchase (often with Paypal Subscription button).
2. Transaction is created on Safe Activation and email sent to customer.
3. Order data is sent to ExcelRT Cloud.
4. ExcelRT Clouds polls the received data and creates new User account.

On Safe Activation, the Order Edit page contains setup data to generate the
transaction, assign and deliver the Serial Number and forward data to ExcelRT
Cloud. To link your Safe Activation and ExcelRT Cloud accounts, follow the online
help topic by including this line in the Notes field of the Order Edit page.

ExcelRTCloud:URL,CloudVendorID,OrderPassword

The URL is the URL used to log into your ExcelRT Cloud account. The
CloudVendorID field is the Vendor ID assigned to your account. The
OrderPassword field is shown on the Order Data dialog in your Vendor Account.

Chapter 8: ExcelRT Cloud

8-23

From the Vendor account in ExcelRT Cloud, click the Order Setup button to
configure the account creation process.

Set the Poll for Orders checkbox. To flag newly created user account for further
action by the Vendor, set the Alert on New User checkbox.

Under Default Account Name, select a radio button to set the criteria used to
construct the Account name. The account name can be the user’s First and Last
name such as JohnDoe. Some vendors upload specialized Serial Numbers into their
Safe Activation account and use that as an Account name.

The Order ID is assigned during the order process. For a Paypal subscription, the
Order ID is assigned by Paypal and delivered to the customer in an email message.

The FirstnameLast3OrderID option uses a combination of the customer’s first name
plus the last 3 digits of the assigned OrderID making it very likely to be unique.

When a transaction occurs, an email is sent from Safe Activation to the customer. It
includes the OrderID, Serial Number and can instruct the user on how to log into
their new ExcelRT cloud App by providing the App name, User name and default
Password.

The Default Password is constructed based on the selected criteria. After logging in,
the user can change the password as desired. The Vendor can also look up or
change the password.

Chapter 8: ExcelRT Cloud

8-24

After logging out of the Vendor account and quitting the browser, ExcelRT Cloud
periodically polls once a minute for stored order data and constructs user accounts.

To process order data while logged into a Vendor account, click the Process Orders
button on the Vendor screen. When order data is process, log entries are added for
later review by the vendor.

While an automated purchase is usually the triggering event for this process, it is
possible to simulate the process during testing or to provide a user with a free Serial
Number. From the Transaction List page in Safe Activation, select a named Order
process and click Add to present the Transaction Add screen.

Five fields of information are required to transmit order data to ExcelRT cloud, the
ToEmail, OrderID, ShipToFirstName, ShipToLastName and Item1 fields. The Item1
field must be the name of a Product record defined in Safe Activation that has an
assigned group of Serial Numbers. When the transaction is generated, a Serial
Number from that group is assigned and delivered to the email address.

Chapter 8: ExcelRT Cloud

8-25

Suspend User Account
The Vendor or an automated process can suspend or a Serial Number or cancel a
Subscription. An event can be configured in Safe Activation to set an Alert in a
User account or unassign an App when the Suspend checkbox is set or the
Subscriber checkbox is cleared for a Serial Number.

To configure an Event in Safe Activation, click the Add button in the Event menu to
present the Event Edit screen.

Refer to the help topic in Safe Activation to configure an event that triggers data to
be sent to ExcelRT Cloud when the Suspend checkbox is set or the Subscriber
checkbox is cleared.

Cloud Apps are generally sold as monthly subscriptions, where the batch of Serial
Numbers has the Subscriber checkbox initially set. As long as the periodic
subscription is paid, the user remains an active subscriber.

From the Order Data dialog in ExcelRT Cloud, set the Alert on Suspend and/or
Unassign on Suspend checkbox to take appropriate action if the account is
suspended or the subscription is canceled.

Chapter 8: ExcelRT Cloud

8-26

App Family
One Serial Number can control a
family of Apps when creating the user
account, assigning new Apps to an
existing user account or suspending
Apps.

On the Order Data screen, click the
Add button next to the App Family
listbox.

In the App Family dialog, enter the
name for a family of Apps. Now enter a comma-separated list of App names.

Within Safe Activation, the purchased product is the App Family. When a user
purchases a Serial Number an account can be created in ExcelRT Cloud with all of
the assigned Apps. Later those Apps can be suspended using that same Serial
Number.

Chapter 8: ExcelRT Cloud

8-27

ExcelRT Plugin
An ExcelRT Plugin file can used in an ExcelRT Cloud account in several ways. To
an application user, each approach appears to work the same. For a developer, there
can be a significant impact during development, testing and for ongoing
maintenance.

To understand each approach, consider that each user account has a separate Plugins
folder. All Apps within an account share the same Plugins folder. If 500 user
accounts are assigned to your App and the Plugin file is stored in each Plugins folder
and is permanently expanded into each Plugins, a lot of disk space is required and
maintenance gets complicated if you want to change files within the Plugin.

A Shared plugin with on-demand virtual instances can offer huge advantages.

Manual Expand

The Plugin file is stored in the Plugins folder for each user account. Using a
script command, the Plugin file can be expanded into a folder. The HTML
control and PluginTaggedTemplate script command references the expanded
folder name.

Auto Expand

The Plugin file is stored in the Plugins folder for each user account. The HTML
control and PluginTaggedTemplate script command references the Plugin file
name rather than the expanded folder name. On first use, if the Plugin file is not
password protected, it is expanded to a folder within the Plugins folder.

Virtual Expand

The Plugin file is stored in the Plugins folder for each user account. The HTML
control and PluginTaggedTemplate script command references the Plugin name
rather than the expanded folder name. On first use, if the Plugin file is
password protected, it is expanded to a virtual folder. The virtual folder is
deleted when the browser session ends.

Shared

The Plugin file is stored once in the vendor account and never copied into the
Plugins folder of any user account. The HTML control and
PluginTaggedTemplate script command references the Plugin file name rather
than the expanded folder name. When an App runs in a user account that
references the Plugin, a virtual instance of the expanded plugin folder is created
and retained until the browser session is closed.

Chapter 8: ExcelRT Cloud

8-28

As a developer, you are probably wondering how and when a Plugin file is copied
into the Plugins folder of each user account or how to designate a Shared plugin.

From the App Edit dialog, a Plugin file can be uploaded just like the ERT or XML
file itself. With that App selected on the Vendor page, click the Plugins button to
present a dialog that designates how files are managed within user accounts.

In this example, BarChart2.excelrt_plugin is marked as Shared and
HTML1.excelrt_plugin is marked as Yes indicating that this file is copied into the
Plugins folder of each newly created user account. After setting a file as Shared (or
changing to not Shared), go to the ExcelRT Control Panel and Stop and Start the
server for the change to take affect.

When an App is assigned to a user account on the Vendor page, files marked as Yes
in the dialog above are copied to the Plugins folder of that account. Files marked as
Shared are not copied.

For existing user accounts that are already assigned to an App, marking a new file as
Yes will not cause the file to be copied to the Plugins folder. The Copy To User ID
or Copy To All Users buttons could accomplish that.

A Vendor can see what files are currently stored in the Plugins folder of a selected
user account by clicking the Plugins button above the user list. From this dialog,
the Vendor can delete a file or folder of files from the user account Plugins folder.

For special situations, a Plugin file can be copied into the Plugins folder of a user
account using a Cloud Sharing account or even retrieved from a Vendor website
using script commands.

Chapter 8: ExcelRT Cloud

8-29

User Profile
The Profile button presents the User Profile dialog for a selected user account. This
dialog shows which Apps a user runs, how often and the screen size used.

When an ExcelRT app runs from a browser for the first time, it creates a Cookie that
stores the current date, hour, minute and second. Other information collected during
the session includes the screen size. Together these fields form a profile that is
relatively static over the life of an App.

In the example above, each row represents a specific device and browser
combination. If an App runs multiple times on that browser, that row of data can
update over time. For example, the Width, Height and Apps fields of a specific row
represent a composite of information collected over time.

Most computer screens are wider than they are tall. On a computer, the user can
resize the browser window width and height. Mobile devices can often be rotated
but the browser width and height is fixed. For each user session, the longest axis is
assumed to be the width and the shortest axis is assumed to be the height. On a
future session, if the width or height is increased, the larger value is stored on that
profile line.

For a mobile device, the Width and Height instantly shows the vendor the size of the
browser window. For an App running in a computer browser, over time the Width
and Height parameters show the maximum browser size used to present the App.

The Apps field shows the name of each App that runs in that user account. Notice
each App name is followed by a : and the launch count for that App. When multiple
Apps run from the same user account, App names are separated with commas.

Chapter 8: ExcelRT Cloud

8-30

Script Commands
ExcelRT supports hundreds of script commands. Almost all commands work
exactly the same for either macOS or Windows desktop applications built with
ExcelRT. There are a few platform specific commands that only apply to macOS or
Windows.

Most ExcelRT commands work the same in ExcelRT Cloud as they do in a desktop
application. The environment of a cloud application is inherently different since the
user doesn’t have direct access to the hard drive where the application is running.

Script commands that apply to a specific OS are not supported in ExcelRT Cloud.
Some commands that integrate with a specific technology like ODBC are not
supported. Another such example is Python integration. While the Python
command is not supported, the PythonServer command is supported with the
ExcelRT Vendor Commands suite of script commands.

Script commands that are not supported in ExcelRT Cloud can either be ignored or
an error dialog can be presented based on the Ignore Unsupported Script Commands
checkbox on the App Edit dialog used to define the application. When testing a
script in ExcelRT Cloud that was originally developed for a desktop application, the
developer many want to see a message for each supported command. After making
necessary script changes, this checkbox can be set to ignore those unsupported
commands.

HTML controls and Plugins may require some changes in ExcelRT Cloud. If the
HTML content is coming from the Internet, it should work essentially the same in a
desktop or cloud app. Assume the HTML content is coming from the Plugins folder.
In a desktop application, the main HTML file can reference other files at a relative
location. In a cloud application, there is a Plugins folder that can hold the main
HTML file, but references to other files at a relative location are broken. For a
complex HTML control, put the files on your own website and then reference the
main URL from the HTML control on an ExcelRT sheet.

Chapter 8: ExcelRT Cloud

8-31

Backups
ExcelRT Cloud implements a multi-tier backup strategy. Each day, a backup is
made of the entire Vendor account and individual backups are made of each user
account. These rolling backups are stored for three days.

Here are the backup types:

• Vendor Backup – A Vendor can restore their entire account including all
user-generated files to the state it existed during one of the last three
backups.

• User Backup – A User can restore the files associated with a specific App

or with their entire account (an account may have several assigned Apps) to
a backup made during the last three days.

• Cloud Sharing Account – Users can upload and download files to an

external Cloud Sharing account. A Cloud Sharing account allows files to
be shared with other users, desktop applications or archived on a local Mac
or Windows computer.

• Server Backup – Excel Software maintains a daily archive of Vendor

accounts. While technically possible, the manual restoration process will
cost the vendor hundred dollars to cover the human time involved.

Here is the dialog presented by clicking the
Restore button in a user account.

Users have the ability to quickly restore their
account to a previous backup if they accidentally
delete an important file.

Chapter 8: ExcelRT Cloud

8-32

Chapter

9

Tutorial

To create a Mac or Windows application from your Excel workbook file requires
multiple steps and several tools. It’s a process that may take several days depending
on the complexity of your workbook.

Before starting on your own project, you need a basic understanding of how the
whole process works. The TravelCalc tutorial starts with an Excel workbook,
converts it to an ExcelRT file and then adds licensing and user interface options to
produce a protected standalone application.

TravelCalc
Right-click on the ConvertExcelRT shortcut icon and choose Show File Location
from the popup menu. Locate the Sample1 folder. If your Windows OS is not
displaying file extensions, use View Options to turn file extensions on.

Open Workbook in Excel
Open TravelCalc.xlsx into Microsoft Excel. You will see a simple workbook
with one sheet that allows rows of information to be entered for travel expenses. A
table of alternating background colors holds much of the data. Some basic
calculations are performed on the entered data.

Notice how the column and row headers have been hidden. The workbook
developer has applied a cell format to each cell. Once converted, data gets presented
nicely within ExcelRT.

Chapter 9: Tutorial

9-1

Notice how data is centered in some columns and right justified in others. Unlike
Excel, ExcelRT doesn’t try to guess how you want data formatted or justified.

Notice the title “Travel expense calculator” in red across the top. For that text to
span several cells in ExcelRT, select those cells and choose Merged Cells in the
Format dialog.

Workbook in Microsoft Excel

Generate TravelCalc.xml
In this section, you will convert the Excel workbook into an XML file that can be
opened into ExcelRT using the ConvertExcelRT tool.

Your user account probably does not have read/write access to files stored under the
Program Files directory structure. Copy file TravelCalc.xlsx to a Test folder
within your Documents folder.

Launch ConvertExcelRT and set options in the main window so they match those
shown below. Ignore options related to pictures since this workbook has no
pictures. Make sure the Overview checkbox is set, then close the window to quit the
application and save your changes.

Chapter 9: Tutorial

9-2

ConvertExcelRT Application

Drag and drop file TravelCalc.xlsx to the application or shortcut icon for
ConvertExcelRT. Notice how it opens the main window and presents the Overview
dialog shown below.

Overview Dialog Determines Sheets and Cell Ranges To Process

Set the checkbox for the sheet to process and type the Column letter and Row
number of the bottom right cell that is actually required for this workbook. Set the
Limit Cells checkbox. When your dialog matches the image above, click the OK
button.

Depending on the speed of your computer and assuming there are no issues caused
by a virus scanner, the conversion process should complete in about ten seconds and
file TravelCalc.xml should be output to the same folder as the source file.

Chapter 9: Tutorial

9-3

Open TravelCalc in Design Mode
To open TravelCalc.xml into ExcelRT, drag and drop it on the application icon or
shortcut file. The workbook is presented within the ExcelRT application.

Workbook in Design Mode within ExcelRT

Type a new row of data into the workbook. Notice how calculations are updated.
Sheet names are listed across the top of the window. For this workbook, the column
and row labels and scrollbars have been hidden.

At the top-left corner of the window, notice the small ribbon of tools. This can also
be hidden if it presents no value to the application. Since an XML file is open,
ExcelRT is in design mode.

In Design mode, the File menu has several commands. Most of these commands are
not used by a typical developer, but can be useful when troubleshooting a conversion
issue.

One command you will use is the Save Encrypted command. It outputs an
encrypted ERT file suitable for a customer. For this tutorial, we have created the
ERT file for you. Click the close box in the top corner of the ExcelRT window to
quit the application.

Chapter 9: Tutorial

9-4

Open TravelCalc in User Mode
The Sample1 folder supplied with ConvertExcelRT includes TravelCalc.ert with an
Open password of “Test” applied to it. Copy that file to your Test folder, then drag
and drop that file onto ExcelRT. You can also launch ExcelRT and it will prompt
you for the file to open.

Notice the Open Password dialog is presented because that feature was applied to the
encrypted file. Enter “Test” without the quotes and click OK.

Open Encrypted File into ExcelRT

Once the file is open, everything looks about the same in User mode as it did in
Design mode. Notice how we choose to hide the ribbon. Also, notice how most
commands on the File menu have disappeared.

Add License to App
Most developers that sell an application using ExcelRT will want to apply a license
for computer unique activation. QuickLicense supports many license types,
activation procedures and a
customizable interface for your app.

To complete this tutorial, you’ll
need QuickLicense. Even without
it, you can follow along to see how
the process works. Create a
TravelCalc folder directly on drive
C and inside create a Source and
Output folder as illustrated here.

Chapter 9: Tutorial

9-5

Copy several files to the Source folder that are used to generate the protected
application. TravelCal.ert is the file used to generate the app. TravelCalc.ico is a
windows icon that will be applied to the application. On Mac, use TravelCalc.icns.

Source Files for Protected Application

Icon files can be created from a graphic image using an Icon building tool, but are
included in the Sample1 folder for your convenience.

TravelCalc.Ticket defines a simple product license and pre-activation license
agreement configured with QuickLicense. After completing this tutorial, you may
want to review Tutorial 1 that comes with QuickLicense for details on how to
produce your own custom Ticket file.

Launch the AddLicense wrapping tool include with QuickLicense.

Build Protected App with AddLicense

Chapter 9: Tutorial

9-6

Within the main AddLicense window, select your source files and the output folder
as illustrated above. Click the Options button and present the ExcelRT Options
dialog.

Configure App Interface with ExcelRT Options Dialog

Most workbooks are designed to allow a user to create different named copies of the
file for each client or project. For the TravelCalc app, the data for each employee is
stored in a named copy of the data file as you’ll see later in the tutorial.

Notice the checkboxes named New, Clone, Rename, etc. These are used to
customize the user interface of the Open Data File interface window presented by
the protected application. If you want your application to always open the same data
file, you can completely suppress the Open Data File window.

Fill in the Encryption Password field to match the Open password that was applied
to your encrypted file, then click OK to close the dialog.

Click the Build Protected Application button in the main AddLicense window to
generate the protected application with a custom icon.

Chapter 9: Tutorial

9-7

Launch Protected App
The protected application generated in the Output folder can be renamed and
distributed to each customer. On launch, a license agreement is presented. This is
one of the many optional features in QuickLicense.

License Agreement Presented Before Activation

When the user clicks Continue, a manual Activation dialog is presented. You might
choose to use an online Serial Number activation process or USB dongle instead.

Manual Activation Dialog

Chapter 9: Tutorial

9-8

The Request Number displayed in the Activation dialog is unique for each computer.
For the purpose of this tutorial, we’ve made the Activation Code the same as the
displayed Request Number. Type that number and click Activate Now.

The Open Data File window is presented. Keep in mind, you can customize this
window by hiding any buttons you don’t need in your app. This window is
presented each time the user launches your app to provide a user interface for
managing data files.

Open Data File User Interface Window

Click New to create a named file in the list. To open that file into ExcelRT, select it
and click Open or just double-click.

Chapter 9: Tutorial

9-9

Your App Presented in ExcelRT

ExcelRT can be installed first or together with your application as described in the
ExcelRT Location section of the Deploy ExcelRT chapter. Developers that purchase
a Serial Number for ExcelRT, get royalty-free distribution rights for ExcelRT with
their application.

Chapter 9: Tutorial

9-10

Convert Workbook
This tutorial covers some of the most common issues faced by every developer when
converting their workbook to run within ExcelRT. Complete this tutorial to
demonstrate errors and solutions before attempting to convert your own workbook.

Create Simple Workbook
Create a new Excel workbook named Tutorial.xlsx then enter this data into the
specified cells. When completed, your workbook should look like the image below.

1. In A1, type: Calculate Bank Account Interest
2. In A3, type: Account
3. In B3, type: Principle
4. In C3, type: % Rate
5. In D3, type: Interest
6. In D4, type: =B4*C4
7. In D5, type: =B5*C5
8. In D6, type: =B6*C6
9. In D7, type: =B7*C7
10. In D8, type: =B8*C8
11. In B10, type: Total Interest
12. In D10, type: =SUM(D4:D8)

Simple Excel Workbook

Chapter 9: Tutorial

9-11

Convert Workbook
Launch ConvertExcelRT. Set every checkbox except for Overview and Maximize,
then click the close box at the top right corner of the window to quit the application.

Drag and drop, Tutorial.xlsx onto the ConvertExcelRT application or shortcut
icon. The conversion process should take a few seconds and outputs file
Tutorial.xml. Drag and drop Tuturial.xml onto the ExcelRT application.

Workbook in ExcelRT – Conversion 1

At first glance, you’ll notice several issues. None of the cells are editable. When
you click on a cell, the cell is not selected and you cannot type data into it. Let’s fix
that.

By default, Excel locks every cell but the lock doesn’t take affect unless you protect
the sheet. This allows the designer to control which cells have editable data and
which cells are static labels.

The Lock feature will be useful later in the conversion process, but for now disable
that feature from ConvertExcelRT. Launch ConvertExcelRT. Uncheck the Use Cell
Lock checkbox then close the window.

The text labels in A1 and B10 in ExcelRT do not extend across cell boundaries.
ExcelRT never extends text outside of a specific cell unless it’s a merged cell.

Open Tutorial.xlsx and select cells A1:D1. Right-click on cell A1 and select the
Format Cells command.

Chapter 9: Tutorial

9-12

Merge Cells with Format Cells Dialog

On the Alignment panel, set the Merge Cells checkbox and for Horizonal alignment,
select Center. On the Font panel, choose Bold and 16-point size. Choose red for the
font color and click OK to save your changes.

Merge cells B10 and C10. Save and close the Excel document, run the conversion
again and open the new XML file into ExcelRT. Now the labels look nicer and data
can be entered into cells.

Workbook in ExcelRT – Conversion 1

Chapter 9: Tutorial

9-13

Cell Formats
If you enter data into this workbook from Excel or ExcelRT, you’ll find there is
room for improvement with the addition of some cell formats and validation rules.

Open the workbook in Excel. Select cells A3:D3 and use the Format Cells dialog to
set text to Bold, Underlined and Centered. Set the Font color to Blue.

Select cells B4:B8 and present the Cell Format dialog. Set the Currency format as
illustrated below, then click OK.

Select cells C4:C8 and present the Cell Format dialog. Set the Percent format and
click OK.

Select cells D4:D8 and present the Cell Format dialog. Set the Currency format and
click OK.

Select Currency Format

Select cells B4:B8 and present the Data Validation dialog. Restrict the user to entry
of decimal values as illustrated below, then click OK. Select cells C4:C8 and restrict
data entry to decimal values.

Chapter 9: Tutorial

9-14

Use Data Validation To Restrict Data Entry

Add a few rows of data, then save and close the Excel workbook.

Excel Workbook with Data and Formatting

Chapter 9: Tutorial

9-15

Convert and open the XML file into ExcelRT.

Workbook with Formatting in ExcelRT

Presentation
The workbook still has some presentation and usability issues. Notice how cells in
the Interest column are left justified. All cells are editable including those with
labels or those that are unused. For a finished application, only cells A4:C8 should
be editable.

Open the Tutorial.xlsx in Excel and right justify cells D4:D10 from the
Alignment panel of the Format Cells dialog.

For cosmetic appearance, resize row 1 so it about twice as tall as the other rows.
Make columns A, B and D wider so they can display larger numbers.

To control which cells are editable and which are static, launch the ConvertExcelRT
application and set the Use Cell Lock checkbox, then quit the application. Select
cells A4:C8 and present the Format Cells dialog for that selected range. On the
Protection panel, clear the Locked checkbox and click OK.

Select cells A4:D8 and present the Format Cells dialog. On the Borders panel add a
thin line border around each cell and click OK.

Chapter 9: Tutorial

9-16

Add Border to Editable Cells

Choose the Options command from the File menu. On the Advanced panel, clear
Show Horizontal Scroll Bar and Show Vertical Scroll Bar checkboxes. Also clear
the Show Row and Column Headers and Show Grid Lines checkboxes.

Select and remove sample cell values you have entered without changing the cell
format. Save the Excel workbook and compare it to the image below.

Finished Workbook in Excel

Chapter 9: Tutorial

9-17

Convert the workbook and open it into ExcelRT. Enter data to verify calculations
and ensure only desired cells are editable.

Finished Workbook in ExcelRT

Your Workbook
When you are ready to process your own workbook, start by writing down the title
of each sheet and minimum required columns and rows of that sheet. For example,
your list might be something like Sheet1-D7, Sheet2-N30, etc.

Launch ConvertExcelRT and set the Overview checkbox. Now process your
workbook and when the Overview window appears, limit the cell range of each
sheet based on your written list.

By minimizing the processed cells, the file size and processing time can be
dramatically reduced.

Chapter 9: Tutorial

9-18

Controls and Scripts
This tutorial covers sheet filters and tables. It also uses form controls, scripts and
programming to implement more advanced features that you may have previously
used VBA code to accomplish.

The features described in this tutorial work essentially the same on Mac, Windows
or Linux. Your screens may appear slightly different based on the platform you use.

Review Workbook
Open TextBtnFilter.xlsx into Microsoft Excel to review the source document used
for this project. That file has been converted to TestBtnFilter.xml for this tutorial.
Notice the workbook consists of three sheets named Buttons, Filter and Table.

TestBtnFiler.xlsx from Sample4 Folder

While running this tutorial, you may want to leave this Excel workbook open so you
can review how each control was configured within Excel and how it works within
ExcelRT.

Chapter 9: Tutorial

9-19

Open File in ExcelRT
File TestBtnFilter.xml was generated from the Excel workbook. It contains several
types of Form Controls that were created from Excel’s Developer ribbon.

Open TestBtnFilter.xml into ExcelRT by dragging and dropping it on the ExcelRT
application icon.

TestBtnFilter.xml Presented in ExcelRT

In ExcelRT, click on Check Box 3 and notice how it gets checked and cell C4 is set
to TRUE. From Excel, Right-click on that checkbox and choose Format Control
from the Popup menu. Notice the Cell Link field of that control is assigned to C4.

In ExcelRT, click on the radio buttons and notice how the value in cell E6 changes.
Those radios buttons have their Cell Link field set to E6.

The Popup menu and the List Box controls get their data from cells C7:C9. The
Popup menu stores the selected value index at C11 and the List Box stores the
selected value index at F11.

Notice how the Spin Button control increments or decrements the value in E10.

Chapter 9: Tutorial

9-20

Button Actions
Button controls in Excel are often used to run a macro or VBA function. In
ExcelRT, a Button control can run one or more script commands or even launch an
application written in any programming language.

Choose the Button Actions command from the File menu. Enter the two lines of
text shown below and click OK to save the dialog. Button Actions are stored in the
XML file when you click the OK button in the Button Actions dialog. If you save
an encrypted file (ERT file), the button actions are compiled into that file.

Button Actions Dialog

The first line assigns Button 1 to the DataForm command. The first parameter of
this command assigns the labels used by the columns of data linked to the Data Form
dialog. The second parameter assigns the number of rows including the label row.
The third parameter provides a title for the Data Form dialog.

Click Button 1 and notice the Data Form dialog is presented.

Data Form Dialog

Chapter 9: Tutorial

9-21

Click Button 2 to
present the Prompt For
Value dialog.

This dialog is useful
when you want the
user to enter a specific
set of named values
that can be stored as
arbitrary cell values.

Export Data
To export data in cells C6:D9 to a text file, present the Button Actions dialog and
change the Button 1 action as illustrated here.

Button 1=ExportDataToTicketFolder(C6:D9,COMMA,LF,NQ,”Export.csv”)

When clicking the button, you’ll notice a file named Export.csv is created in your
shared Ticket folder. The location on that file depends on your OS.

• Mac - /users/shared/ticket
• Windows – c:\users\public\ticket
• Linux - /var/ticket

The export and import script commands allow your workbook to export or import
data to files or the clipboard with a variety of formatting options.

Run Application
On Mac, a simple Hello application is included in the Plugins folder within the
folder holding ExcelRT. If you double-click that application, you’ll notice that it
presents a simple Hello window.

On Windows, copy Hello.exe from the ExcelRT folder to the Plugins folder. On
Linux, you’ll need to first set the Execute flag for the executable file using the
Properties dialog.

Present the Button Actions dialog and assign Button 1 to run the application based
on the OS you are using. Multiple action commands separated by | can be assigned
to the same button name.

RunMacAppFromPlugin(“Hello.app”)|RunWinAppFromPlugin(“Hello.exe”)

Now close the dialog and click the button to launch the Hello app.

Chapter 9: Tutorial

9-22

Send Command from App
An application that you have written can send a command to your workbook running
in ExcelRT using either a Clipboard or File command. To enable application
commands, present the Button Actions window and set the Enable External
Commands checkbox.

The PlainTextEdit application is included with QuickLicense for your convenience
when testing Clipboard and File commands. On Linux, it is included with ExcelRT.

Double-click on PlainTextEdit to open an empty text-editing window. Type this
simple command into the window.

RequestExcelRT:MsgBox(“Hello”)

To simulate a Clipboard command sent from an application to your workbook
running in ExcelRT, copy this text into the clipboard. Your workbook presents the
Hello message. If the command has a response, its now stored in the clipboard.

To demonstrate the File method of communicating a command and response with
ExcelRT, create a plain text file named ExcelRT.Request. Inside that text file, store
just the text of the command, which in this case is:

 MsgBox(“Hello”)

Now copy and paste file ExcelRT.Request into the shared Ticket folder. ExcelRT
presents the Hello message. It also deletes file ExcelRT.Request and writes file
ExcelRT.Response into the shared Ticket folder.

Chapter 9: Tutorial

9-23

Sheet Filter
Select the Filter sheet. It contains three columns of data with a Filter icon in the
label row of each column.

Columns of Data with Sheet Filter

Click the Filter icon in the Winery column to present the Filter and Sort dialog. To
hide all rows for the Ahlgren Vineyard, clear that checkbox and click Apply.

Filter and Sort Dialog for a Sheet or Table Filter

Chapter 9: Tutorial

9-24

A user can filter and sort rows based on cell or font color. For this to be useful, the
user needs an easy way to change cell fill color or font color. When generating an
encrypted workbook, you can choose to include a simple ribbon with buttons to
change the text style, cell color or font color of the selected cell.

If you would like to experiment with the ribbon features using file TestBtnFilter.xml,
quit ExcelRT and edit this file to enable the ribbon. Drag and drop
TestBtnFilter.xml onto the PlainTextEdit application.

Edit TestBtnFilter.xml with PlainTextEdit on Windows

At the top of the file, notice the attribute Ribbon=”FALSE”. Change that to
Ribbon=”TRUE” and save the file.

Table
Select the sheet named Table. Table rows can be sorted and filtered.

Table Presented in ExcelRT

Chapter 9: Tutorial

9-25

	ExcelRT
	Copyright and Trademarks
	Disclaimer
	Contents
	Setup ExcelRT
	Introduction
	ExcelRT Overview
	Design vs User Mode
	Limits and Differences
	Supported Platforms

	Install on Windows
	Install ExcelRT
	Install ConvertExcelRT
	Run ExcelRT or ConvertExcelRT
	Windows DLL Update
	Uninstall

	Install on Mac
	Install ExcelRT
	Uninstall ExcelRT

	Activation
	Move a License
	Restore a License

	Quick Start
	Prepare Excel Workbook for Conversion

	About This Book
	Support Services

	Develop ExcelRT
	ConvertExcelRT
	Overview Dialog

	ExcelRT Design Mode
	Cell Edit
	Design for 100% Zoom
	Pictures
	Tables
	Encrypted File
	Exceptions
	Performance

	Feature Differences
	Cell Format
	Functions
	Range References
	Range Reference Function
	3D References
	Formula Parameter Nesting
	Calculation Precedence
	Range Selection
	Data Entry
	Array Formulas
	Data Validation
	Pictures & Form Controls
	Background Images
	Structured Table References
	Text Across Cells
	Stylized Text
	Unicode Text

	Recalculation Algorithm
	Design for Performance
	Sheet Type
	Fonts
	Design Mode Interface
	User Mode Interface
	Conversion Checklist

	Program ExcelRT
	Button Actions
	Script Commands
	Vendor Commands
	Server Setup
	RegisterServer
	Log
	Upload
	Email
	EmailServer
	Storage
	Message
	Query
	PythonServer
	Cloud Sharing

	Settings Dialog
	Event Actions
	External Commands
	Clipboard Command
	File Command

	Create a Script
	Variables
	Text Editor
	Script Line Continuation
	Test a Script
	Custom Commands
	Using a Command as a Parameter
	Importing a Script
	Custom Functions

	Script Commands
	Cell Data Import and Export
	Platform Specific
	Shared Ticket Folder
	Custom Images
	Internet Data
	Dialog with Button Actions
	External Applications
	Clipboard and File Data
	Prompt for Data Entry
	Variables
	Prompt User
	Cell References
	Math
	Lists
	Email Read
	External App Communication
	Picture and PDF Files
	Subroutines
	Conditionals and Loops
	Symbols
	CSV Read, Write and Modify
	Multiple CSVs
	Fuzy Queries
	String
	Dialog
	ReportBuilder
	Cell Data
	Cell Controls
	Sheet Resize
	Feature Control
	Credit Card and Paypal
	Stripe Payment
	Message Dialog
	Miscellaneous
	Platform Specific Files
	Splitting & Scaling Images
	Plugin Files
	Google Map and Direction
	Pictures
	Form Controls
	HTML Control
	Command Log
	Arrays
	Cloud License
	Progress
	Switch Rows and Columns
	Sound
	Python
	JSON
	Database

	Deploy ExcelRT
	Generate ERT File
	Standalone App
	ExcelRT on Customer Computer
	Activate Standalone App
	Update Standalone App

	Deploy Plugin Files
	Standalone ExcelRT App

	Screen Size and Orientation
	Purchase Button

	Charts
	Chart Types
	Chart Styles
	Chart Components
	Chart Dimensions
	Chart Data
	Build and Use Charts

	ExcelRT Builder
	Builder Tools
	Cell Properties
	Sheet Add Delete
	Sheet Size
	Erase Cell Data
	Cell Size & Visibility
	Format Rules
	Control Add Delete
	Control Edit
	Pictures
	Cell Control
	Table Add Delete
	Cell Borders
	Cell Validation
	Cell Text Color
	Cell Background
	Cell Copy & Paste
	Paste Cell Range
	Sheet Filter
	Merged Cells
	HTML Control
	ExcelRT Plugin

	ExcelRT Cloud
	Define Apps
	Define Users
	User Experience
	Custom File Manager
	Settings
	Feedback
	Cloud Sharing
	User Notify and Alert
	Batch User
	Plugin Folder
	Update an App
	Custom Login
	Browser & Device User Experience
	ExcelRT Control Panel
	Secure and Unsecured Ports

	ExcelRT Cloud Pricing
	Multiple Vendor Accounts
	Relocate Vendor Account

	Safe Activation
	Create User Account
	Suspend User Account
	App Family

	ExcelRT Plugin
	User Profile
	Script Commands
	Backups

	Tutorial
	TravelCalc
	Open Workbook in Excel
	Generate TravelCalc.xml
	Open TravelCalc in Design Mode
	Open TravelCalc in User Mode
	Add License to App
	Launch Protected App

	Convert Workbook
	Create Simple Workbook
	Convert Workbook
	Cell Formats
	Presentation
	Your Workbook

	Controls and Scripts
	Review Workbook
	Open File in ExcelRT
	Button Actions
	Export Data
	Run Application
	Send Command from App
	Sheet Filter
	Table

