
REQUIREMENTS
By Harold Halbleib

Requirements Management
Identify, Specify, Track and Control Requirements Using a Standard Process

About the author...

Harold Halbleib has a degree in Electrical Engineering and ten years of experience in
developing software for real-time, process control systems. He has spent the last 15 years
developing Software Engineering tools, training engineers and working with hundreds of
software companies around the world. His primary focus has been system analysis,
requirements management, software design, code generation, reengineering, bug tracking,
help authoring and programming for Macintosh, Windows and Linux.

FORWARD

We've all read the dire statistics where most IS-related projects are late, over budget,
lacking in functionality or never delivered. Requirements drive the development process.
Effective requirements management helps to control quality, cost, organization and schedule
thus substantially improving your odds of a successful project.

INTRODUCTION

Requirements are the agreed upon facts about what an application or system must
accomplish for its users. They are largely independent of the methods or notations used to
analyze, design, implement or test the target application. The process of managing
requirements can determine project success and is especially important for larger systems, out-
sourced projects or life critical software. Although primarily focused on software
development, much of this discussion also applies to other activities like hardware
development or systems engineering.

A typical project will have hundreds or even thousands of requirements. Identifying and
specifying those requirements will take time and effort, but the project payback can be
enormous since it impacts every aspect of a project including design, implementation, testing,
user documentation and project management. A solid foundation can substantially reduce
project risk and increase the efficiency of the entire development effort.

Historical data shows that defects occurring in the requirement identification phase are
costly to correct. Requirement defects include missing, incomplete, non-essential, ambiguous,
overlapping or non-implemented requirements. A methodical approach to dealing with
requirements can greatly reduce these deficiencies. Peers or customers can review written
requirements to expose gaps in the understanding of what the project must accomplish.

When developers spend time on design and implementation of non-essential or defective
requirements, they’re not just wasting time that delays the project. The added project bloat
often increases future maintenance costs, slows the final product execution, complicates the
user experience and makes the project more ridged and susceptible to errors during future
enhancements. An accurate requirement list keeps the development effort clean and focused.

Developers, testers, managers and users need an organized approach to identify, specify,
track and control requirements. In the Definition section, we'll define requirements and
common approaches to identify and group them. The Process section shows how
requirements drive the project using a disciplined process. The Structure section suggests a
collection of information retained for each requirement entry. The Traceability section
discusses links and navigation through project deliverables. The Automation section
illustrates how tools can streamline the process of managing requirements.

DEFINITION

A requirement statement is an unambiguous, testable statement defining processing,
information, performance, error handling or capacity parameters about a condition or
capability needed by a user to solve a problem or achieve an objective. System and product
requirements are typically derived from market demands, quality, reliability, performance
criteria and safety considerations.

The first step in creating a list of requirements is to designate a definite boundary around
the system to be considered. A simple picture or a few paragraphs of text can be a good
starting point to ensure a clear, consistent mental picture. This boundary helps determine
what belongs in the requirement list and what does not, since only externally visible aspects of
the system need be included.

Each requirement is uniquely named and becomes one entry in a hierarchy list of
requirements. Since a requirement entry can express a system requirement, product
requirement or UML style use case for a wide variety of software systems, the granularity,
style and format of a requirement entry can vary greatly. It can be a simple, free format
sentence or a more structured collection of data fields created with a user-defined template.

The names of each requirement entry can form a hierarchical structure. Usually three
levels of hierarchy is sufficient where the first part indicates the major functional area in which
the requirement fits, the second part indicates the sub-functional area and the last part makes
the name unique. This grouping of related requirements makes them easier to locate and
helps to avoid incomplete or overlapping entries. When a large project is partitioned into
subprojects and assigned to different developers, the topmost level in the hierarchy can be
used as a namespace. Developers can work independently in different namespaces. With
automated tools, it's easy to collapse and expand the requirement hierarchy, import or export

groups of requirements in a namespace or generate various reports from the requirement
information in a specific namespace.

For large, complex systems it's often advantageous to develop separate system level and
product level Requirement documents. Each system requirement will likely reference multiple
product requirements. The deliverables of development projects vary with each organization,
but requirements should exist at the hub of any document structure.

Document Structure of Typical Development Project

For example, consider the design of a distributed process control system consisting of
many individual products. A system requirement might specify timing constraints for
communicating various types of messages from a process controller to an operator console
connected on a data highway. The communication time depends on processing time required
by each device and across the data highway itself. Several individual product requirements,
one for each device and one for the data highway, would be needed to satisfy this system
requirement.

A requirement statement answers the question, "What must the system do?" or "What must
the product do?", but never, "How will the software do it?" Requirement statements are
generally unaffected by the analysis, design and implementation methods and notations being
used in the project.

Specifying how something will be accomplished in a requirement will imply a design or
worse yet an implementation. Different designs may satisfy the same requirements. A future
redesign should have little impact on the underlying requirements. Design, technology and
implementation issues are much more susceptible to change than true customer requirements.
A good Requirements document provides a stable framework that maintains its integrity
amidst those changes.

Occasionally, indisputable design constraints are placed on the project such as conforming
to an established architecture, industry standard or being compatible with an existing installed
base of products. In these cases, prior architectural or design constraints do become true
requirements of the new development project.

A well-written requirement is testable. Avoid words like "most" and "some" and adverbs
and adjectives like "quickly" and "robust" since these will make the requirement subject to
interpretation and inherently non-testable. Be specific and watch for unstated assumptions. If
a finite set of tests cannot prove that your system has passed or failed to satisfy the
requirement, the requirement should be rewritten. Keep requirement statements short,
focused and non-redundant.

An important part of writing requirements is to develop a glossary for the project. Every
organizational acronym, industry standard, piece of hardware, communication interface,
protocol and role that users can perform should become a defined name in the glossary.
Always use glossary names in requirement statements to keep them short and non-redundant.

Once you develop a list of requirements, you want to review, refine and rewrite them to
achieve quality definitions since they will drive team productivity during the design,
implementation and testing activities that follow. A formal requirements review should ask
these questions. Are all requirements included, within the scope and necessary for the
software being developed? Is each requirement testable, feasible, independent, non-redundant
and traceable? Has any term been used that's not defined in the glossary with a single,
unambiguous meaning? Is there any unnecessary information that can be stripped from a
requirement to make it as terse and design independent as possible?

PROCESS

Managing requirements is a process, not an event. That process starts at the conception of
a project and continues until the developed system has been discontinued and is no longer
supported. Later we'll discuss the structure of a requirement entry, where one field is its
Status.

The Status field indicates the state of progress of a requirement entry through its
lifecycle. The Proposed state identifies a newly suggested requirement. Approved state
indicates that a requirement will be implemented in the current project. Implemented state
means the requirement has been implemented and is ready for testing. Validated state means

the requirement is completed. Postponed state indicates that the requirement won’t be
addressed by the current project.

An automated tool can track the progress of each requirement through each state of its
lifecycle. It should also allow you to add new states if your process requires it. For example,
in a large system that includes system requirements and product requirements you might
want several validation states like Unit Validation, Product Validation and System Validation.
If you're outsourcing design and implementation, you might want an Out Source Validation
and In House Validation state.

To manage expectations and achieve your project schedule, you'll want to get most
requirements nailed down very earlier in a development project. To reduce project risk, focus
early prototyping efforts and detailed analysis on those aspects of a project with the biggest
unknowns and most significant impact on a project's success.

Requirements are identified and refined using numerous methods including customer
surveys, brainstorming sessions, marketing analysis and engineering analysis activities. Data
flow diagrams and entity-relation diagrams are commonly used tools during this phase of the
project. These diagrams provide a communication medium between the analyst, customer
and management. They increase understanding of the problem domain and help to surface
the essential requirements for the project.

Various methods and notations have been developed for analyzing systems and designing
software. Structured analysis and design is popular in real-time, embedded systems. Desktop
applications often use object-oriented analysis and design with notations like UML. Data
modeling has been used for decades to design database systems. Some diagramming
techniques like DFDs and Use Cases diagrams are used during the process of discovering
requirements while others like structure charts, class diagrams and object diagrams are used
during design to satisfy specified requirements. Later we'll discuss how traceability ties
requirement entries to analysis diagrams, design diagrams, code files and test designs or
procedures.

STRUCTURE

In its simplest form, a requirement list could be one-line definitions each having a unique
entry name stored in a text file. Given the far-reaching impact of requirements and different
needs of users, developers, managers and testers you'll likely want to gather a collection of
information about each requirement entry. An automated tool makes this easy and should
allow user-definable structure to that collection. Here's a standard structure that works well
for most projects along with the meaning and intent of each field.

The Priority field of a requirement can be set to Low, Medium or High to indicate its
urgency. This field is used in queries to show which requirements should get immediate
attention. The Status field indicates the progress of a requirement entry through its lifecycle
as discussed earlier. The Author and Date fields are usually defaulted by an automated tool
at the time the requirement entry is created.

Use the Assigned field to indicate who has responsibility for implementing the
requirement. You might want to add a Tester field if your organization has independent

product testers. The project manager or team leader can assign test responsibility for each
requirement entry.

The Category field lets you categorize each requirement entry. Category choices might
include Interface, Functional, Data, Configuration, Performance, Reliability,
Compatibility and Error. You’ll probably need to adjust the choices of this field in the
user-defined template to better fit the type of projects you do.

The Effort field indicates in person days an estimate of the work required for
implementation. Your organization needs to decide if that time estimate should include test
effort, management overhead, technical documentation, etc. If you're grouping requirements
into group and member entries, you may want to show the implementation time in each
member entry and the rest of the overhead time in the group entry.

The Summary field is a brief, single line summarization of the requirement. Often when
scanning through requirements or generating management reports, you’ll use this field rather
than the full description. The Description field allows multiple lines of free format text
where you can provide the explicit details of the requirement.

Requirements sometimes evolve during implementation and as understanding of the
system and the user’s needs change. The Comments field is a place for anyone to express
suggestions, describe problems or provide other feedback about a requirement. That
information can later be considered when updating the Description field.

TRACEABILITY

The Parent field of a requirement entry can link to earlier documents that provide
supplemental information, marketing specifications or engineering analysis. Documents later
derived from the requirements are linked to the Child field. Requirements also link to each
other to express a variety of relationships like inheritance, inclusion and extension. Links
assist in user navigation of project information and can be transferred into generated reports.

Each requirement can reference analysis models, design models, text specifications, code
files, test files, HTML files, files created in other applications and other requirement entries.
For example, a system requirement will reference each related product requirement in its
Child field, while each of those product requirements will reference the system requirement
in its Parent field. Each requirement entry will probably target one or more graphic models
from its Child field that illustrate its design.

Change control is an important aspect of requirements management. If requirements
change which documents are affected? Who needs to be notified? How significant is the
ripple effect throughout existing design, code and test procedures? Traceability improves risk
assessment, project scheduling and change control.

Traceability is a two-way street. If you're reading a requirement, the developer should be
able to click to the related deliverables. Likewise, if you're looking at a design diagram of
some type you should be able to see all related requirements. Traceability also provides a
navigation mechanism that allows you to select a requirement of interest and then navigate to
the related design diagrams, code files or test procedures in the project.

AUTOMATION

During our discussion of defining and managing requirements with a well-defined process,
using a structured collection of data for each entry and providing two-way traceability to other
project deliverables, we've mentioned several automation opportunities.

Gathering, refining, implementing, testing and using requirements to manage a project is a
collaborative process involving many people. Collaboration without a defined process can
lead to chaos. However, following a process without automation is labor intensive.

Requirements management is an integral part of the development process that also
includes system analysis and software design. Several tools are available to manage
requirements including Rational Software's Requisite Pro, Telelogic's DOORs and Excel
Software's WinA&D product. WinA&D combines requirements management with structured
analysis and design, object-oriented methods and notations like UML, data modeling for
database systems, code generation and reengineering. Screens from WinA&D shown below
illustrate the automation of requirements management.

An automated tool can enforce a structure on requirement entries and make it easy to
comply by just filling in the blanks. The fields in that structure should be configurable by the
user including allowable selections and data types of each field. Some fields like Author and
Date can be automatically defaulted to reduce data entry time.

Defining a Requirement Entry

Requirement information should be viewable as standard or user-definable views and
queries as illustrated in the Requirement Matrix below. Views determine what fields are
shown in each column and their order. Queries define the selection criteria to determine

which requirements are shown. By choosing a specific view and query, different users can
precisely access the data they need.

Requirements Matrix Shows a Customized View of Requirement Information

For example, system analysts and software architects will mostly be concerned with
requirements in the Propose or Approved state so they'll use views and queries to reflect that.
The project manager can view each requirement name and its priority, summary, status,
estimated effort and whom it's assigned to. That subset of information can be extracted to a
scheduling program or edited to balance the workload of team members. Software designers
and programmers can narrow their view to those requirement entries in a specific namespace
reflecting the functional area they're working on or to those requirements specifically assigned
to them. Programmers can move requirements from the Approved to Implemented state.
Testers can view and focus their effort on requirements assigned to them and as completed,
change the status to Validated.

In addition to displaying the precise information needed by each person, an automated tool
makes that information exportable, importable, printable and reportable using built-in
customizable features. For example, WinA&D includes a built-in scriptable reporting engine
with full access to requirements, graphic analysis and design models, text specifications,
dictionary information, code files and test procedures. Choose from dozens of standard
reports or create customized reports with full control over the content and format.

HTML Report Generated from Product Requirements

Notice that the automation has not only enforced a disciplined, streamlined process where
requirements flow through predefined states, but it's also reduced the effort of getting updated
project status. At any instant, the project manager can generate a formatted project report that
reflects the current status of the project and highlights areas that need attention.

SUMMARY

Requirements are an integral part of the development proces connected through
traceability with marketing specifications, analysis diagrams, design models, code files, test
procedures and virtually every other project deliverable. The structure of product
requirements usually lends itself well to organizing the design, implementation and test
activities that follow. The mapping between system requirements and product requirements
and between product requirements and design, implementation and test procedures will help
ensure complete coverage and eliminate overlap.

Each member of the development team uses a different subset of the requirement's
information to do his or her job. An automated tool like WinA&D makes that information
easily accessible through custom views and queries, user defined entry dialogs and scriptable
HTML reports.

Given the leveraging aspect of the requirement's foundation, a good set of requirements is
your best weapon in controlling project quality, cost and schedule. Automated tools enforce a
disciplined, streamlined process on that effort.

